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• Deterministic Data.

• Random Data.

• Characteristics of Random Data.

• Characterization of measurement systems.

• Static and Dynamic characterization.



Deterministic versus 
Random Data
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Figure 1.1 Simple spring mass system. 

There are many physical phenomena in practice that produce data that can be 
represented with reasonable accuracy by explicit mathematical relationships. For 
example, the motion of a satellite in orbit about the earth, the potential across a 
condenser as it discharges through a resistor, the vibration response of an unbalanced 
rotating machine, and the temperature of water as heat is applied are all basically 
deterministic. However, there are many other physical phenomena that produce data 
that are not deterministic. For example, the height of waves in a confused sea, the 
acoustic pressures generated by air rushing through a pipe, and the electrical output of 
a noise generator represent data that cannot be described by explicit mathematical 
relationships. There is no way to predict an exact value at a future instant of time. 
These data are random in character and must be described in terms of probability 
statements and statistical averages rather than by explicit equations. 

The classification of various physical data as being either deterministic or random 
might be debated in many cases. For example, it might be argued that no physical data 
in practice can be truly deterministic because there is always a possibility that some 
unforeseen event in the future might influence the phenomenon producing the data in 
a manner that was not originally considered. On the other hand, it might be argued that 
no physical data are truly random, because an exact mathematical description might 
be possible if a sufficient knowledge of the basic mechanisms of the phenomenon 
producing the data were available. In practical terms, the decision of whether physical 
data are deterministic or random is usually based on the ability to reproduce the data 
by controlled experiments. If an experiment producing specific data of interest can be 
repeated many times with identical results (within the limits of experimental error), 
then the data can generally be considered deterministic. If an experiment cannot be 
designed that will produce identical results when the experiment is repeated, then the 
data must usually be considered random in nature. 

Various special classifications of deterministic and random data will now be 
discussed. Note that the classifications are selected from an analysis viewpoint and do 
not necessarily represent the most suitable classifications from other possible view-
points. Further note that physical data are usually thought of as being functions of time 
and will be discussed in such terms for convenience. Any other variable, however, can 
replace time, as required. 

Deterministic Data
• Any observed data 

representing a physical 
phenomenon can be broadly 
classified as being either 
deterministic or 
nondeterministic.

• Deterministic data are those 
that can be described by an 
explicit mathematical 
relationship.
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Classification of Deterministic Data

(Periódico
arbitrario)
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Figure 1.3 Time history and spectrum of sinusoidal data. 

The frequency and period are related by 

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude 
component at a specific frequency, as opposed to a continuous plot of amplitude 
versus frequency. Such spectra are called discrete spectra or line spectra. 

There are many examples of physical phenomena that produce approximately 
sinusoidal data in practice. The voltage output of an electrical alternator is one example; 
the vibratory motion of an unbalanced rotating weight is another. Sinusoidal data 
represent one of the simplest forms of time-varying data from the analysis viewpoint. 

1.2.2 Complex Periodic Data 

Complex periodic data are those types of periodic data that can be defined math-
ematically by a time-varying function whose waveform exactly repeats itself at 
regular intervals such that 

As for sinusoidal data, the time interval required for one full fluctuation is called the 
period Tp. The number of cycles per unit time is called the fundamentalfrequency j \ . A 
special case for complex periodic data is clearly sinusoidal data, where f\ =/0. 

With few exceptions in practice, complex periodic data may be expanded into a 
Fourier series according to the following formula: 

x{t) — x(t �  nTp) �  = 1 , 2 , 3 , . . . (1.5) 

oo 
x(t) — + ^ ^ ( � �  cos 2nnf\t + bn sin2%nf\t) 

2 n=l 
(1.6) 

where 

0 , 1 , 2 , . . . 

1 , 2 , 3 , . . . 

Sinusoidal
x(t) = X sin(2⇡f0t+ �)

Discrete spectra

f0 =
1

Tp
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An alternative way to express the Fourier series for complex periodic data is 

oo 

x{t) =� 0+� � �  cos{2nnfi �-� � ) (1.7) 

n = l 

where 

X 0 = a0/2 

Xn = y/aJ+bJ n = l , 2 , 3 , . . . 

0„ = t a n - 1 (£>„/««) n = l , 2 , 3 , . . . 
In words, Equation (1.7) says that complex periodic data consist of a static component 
Xq and an infinite number of sinusoidal components called harmonics, which have 
amplitudes XN and phases � � . The frequencies of the harmonic components are all 
integral multiples o f / j . 

When analyzing periodic data in practice, the phase angles � �  are often ignored. 
For this case, Equation (1.7) can be characterized by a discrete spectrum, as illustrated 
in Figure 1.4. Sometimes, complex periodic data will include only a few components. 
In other cases, the fundamental component may be absent. For example, suppose a 
periodic time history is formed by mixing three sine waves that have frequencies of 60, 
75, and 100 Hz. The highest common divisor is 5 Hz, so the period of the resulting 
periodic data is TP = 0.2 s. Hence, when expanded into a Fourier series, all values of XN 

are zero except for �  = 12, �  = 15, and �  = 20. 
Physical phenomena that produce complex periodic data are far more common 

than those that produce simple sinusoidal data. In fact, the classification of data as 
being sinusoidal is often only an approximation for data that are actually complex. For 
example, the voltage output from an electrical alternator may actually display, under 
careful inspection, some small contributions at higher harmonic frequencies. In other 
cases, intense harmonic components may be present in periodic physical data. For 
example, the vibration response of a multicyclinder reciprocating engine will usually 
display considerable harmonic content. 

Amplitude 
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�  
Xs 
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Figure 1.4 Spectrum of complex periodic data. 

• Frequency 

Complex Periodic
(Arbitrario)

x(t) = X(t± nTp), n = 1, 2, 3, . . .

f1 =
1

Tp

Data consists of a static component 
X0 and an infinite number of 
sinusoidal components called 
harmonics. integral multiples of f1.
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1.2.3 Almost-Periodic Data 

In Section 1.2.2, it is noted that periodic data can generally be reduced to a series of 
sine waves with commensurately related frequencies. Conversely, the data formed by 
summing two or more commensurately related sine waves will be periodic. However, 
the data formed by summing two or more sine waves with arbitrary frequencies 
generally will not be periodic. Specifically, the sum of two or more sine waves will be 
periodic only when the ratios of all possible pairs of frequencies form rational 
numbers. This indicates that a fundamental period exists that will satisfy the 
requirements of Equation (1.5). Hence, 

x(t) = Xi sin(2r + 0 i ) + X 2 s i n ( 3 / + 0 2 ) + X 3 s i n ( 7 i + 03) 

is periodic because | , � , and �  are rational numbers (the fundamental period is Tp=\). 
On the other hand, 

x(t) =Xi sin(2r + 0 1 ) + X 2 S i n ( 3 r + 0 2 ) + X 3 s i n ( v / 5 O r + 0 3 ) 

is not periodic because 2/\/50 and 3 / v/50 are not rational numbers (the fundamental 
period is infinitely long). The resulting time history in this case will have an almost-
periodic character, but the requirements of Equation (1.5) will not be satisfied for any 
finite value of Tp. 

Based on these discussions, almost-periodic data are those types of nonperiodic 
data that can be defined mathematically by a time-varying function of the form 

� (� =� � � � � (2� /� � + � � ) (1.8) 
n = 1 

where fn/fm �  rational number in all cases. Physical phenomena producing almost-
periodic data frequently occur in practice when the effects of two or more unrelated 
periodic phenomena are mixed. A good example is the vibration response in a 
multiple-engine propeller airplane when the engines are out of synchronization. 

An important property of almost-periodic data is as follows. If the phase angles 0„ 
are ignored, Equation (1.8) can be characterized by a discrete frequency spectrum 
similar to that for complex periodic data. The only difference is that the frequencies of 
the components are not related by rational numbers, as illustrated in Figure 1.5. 

Amplitude 

rXi 

frequency 

Figure 1.5 Spectrum of almost-periodic data. 

No relation



Transient Nonperiodic Data
CLASSIFICATIONS OF DETERMINISTIC DATA 7 

Figure 1.6 Illustrations of transient data. 

1.2.4 Transient Nonperiodic Data 

Transient data are defined as all nonperiodic data other than the almost-periodic data 
discussed in Section 1.2.3. In other words, transient data include all data not 
previously discussed that can be described by some suitable time-varying function. 
Three simple examples of transient data are given in Figure 1.6. 

Physical phenomena that produce transient data are numerous and diverse. For 
example, the data in Figure 1.6(a) could represent the temperature of water in a kettle 
(relative to room temperature) after the flame is turned off. The data in Figure 1.6(b) 
might represent the free vibration of a damped mechanical system after an excitation 
force is removed. The data in Figure 1.6(c) could represent the stress in an end-loaded 
cable that breaks at time c. 

An important characteristic of transient data, as opposed to periodic and almost-
periodic data, is that a discrete spectral representation is not possible A continuous 
spectral representation for transient data can be obtained in most cases, however, from 
a Fourier transform given by 

x(f) = x(t)e-J27lftdt (1.9) 

The Fourier transform X(f) is generally a complex number that can be expressed in 
complex polar notation as 

� �/) = \m\e -J6if) 

Here, \X(f)\ is the magnitude of X(f) and #(/) is the argument. In terms of the 
magnitude \X(f)\, continuous spectra of the three transient time histories in 
Figure 1.6 are as presented in Figure 1.7. Modern procedures for the digital 
computation of Fourier series and finite Fourier transforms are detailed in 
Chapter 11. 
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f 

Figure 1.7 Spectra of transient data. 

1.3 CLASSIFICATIONS OF RANDOM DATA 

As discussed earlier, data representing a random physical phenomenon cannot be 
described by an explicit mathematical relationship because each observation of the 
phenomenon will be unique. In other words, any given observation will represent only 
one of many possible results that might have occurred. For example, assume the 
output voltage from a thermal noise generator is recorded as a function of time. A 
specific voltage time history record will be obtained, as shown in Figure 1.8. If a 
second thermal noise generator of identical construction and assembly is operated 
simultaneously, however, a different voltage time history record would result. In fact, 
every thermal noise generator that might be constructed would produce a different 
voltage time history record, as illustrated in Figure 1.8. Hence, the voltage time 
history for any one generator is merely one example of an infinitely large number of 
time histories that might have occurred. 

A single time history representing a random phenomenon is called a sample 
function (or a sample record when observed over a finite time interval). The collection 
of all possible sample functions that the random phenomenon might have produced is 
called a random process or a stochastic process. Hence, a sample record of data for a 
random physical phenomenon may be thought of as one physical realization of a 
random process. 

Random processes may be categorized as being either stationary or nonstationary. 
Stationary random processes may be further categorized as being either ergodic or 
nonergodic. Nonstationary random processes may be further categorized in terms of 

Continuous spectral 
representation.

How do you approximate 
sampling?



Classification of Random Data
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Figure 1.8 Sample records of thermal noise generator outputs. 

specific types of nonstationary properties. These various classifications of random 
processes are schematically illustrated in Figure 1.9. The meaning and physical 
significance of these various types of random processes will now be discussed in broad 
terms. More analytical definitions and developments are presented in Chapters 5 
and 12. 

1.3.1 Stationary Random Data 

When a physical phenomenon is considered in terms of a random process, the properties 
of the phenomenon can hypothetically be described at any instant of time by computing 

Stationary 

I 
Nonstationary 

Ergodic Nonergodtc 
Special 

classifications of 
nonstationarrty 

Figure 1.9 Classifications of random data. 

Random Data
• A single time history 

representing a random 
phenomenon is called a 
sample function (or a sample 
record when observed over a 
finite time interval).

• The collection of all possible 
sample functions that the 
random phenomenon might 
have produced is called a 
random process or a 
stochastic process. 
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Figure 1.10 Ensemble of time history records defining a random process. 

average values over the collection of sample functions that describe the random process. 
For example, consider the collection of sample functions (also called the ensemble) that 
forms the random process illustrated in Figure 1.10. The mean value (first moment) of the 
random process at some ti can be computed by taking the instantaneous value of each 
sample function of the ensemble at time ri, summing the values, and dividing by the 
number of sample functions. In a similar manner, a correlation (joint moment) between 
the values of the random process at two different times (called the autocorrelation 
function) can be computed by taking the ensemble average of the product of instant-
aneous values at two times, t\ andi] -I- � . That is, for the random process {*(?)}, where 
thesymbol {} is used to denote an ensemble of sample functions, the mean value ^ f ^ a n d 
the autocorrelation function R^ (tx, t\ + � ) are given by 

1 N 

� � {*�) = A , l i m I? �  
k�  1 

(1.10a) 

1 N 

Rxx(h,h +� ) = lim - YV(fi)**(ii + T ) (1.10b) 
�  � > oo i v f—, 

k=\ 
where the final summation assumes that each sample function is equally likely. 
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• A random process can be 
described by computing 
average values over the 
collection of sample functions

• If         and                   vary 
with t1, the process is non-
stationary.
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Stationary Random Data
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Ergodic Random Data

• A sample can be taken out of 
any signal, or across a signal 
and it will be representative of 
the event.

• This example could be 
turbulence across 4 flights in 
similar conditions with similar 
aircraft.



Analysis of Random Data
• Basic statistical properties of importance for describing single 

stationary random records are:

• Mean, mean square values, and moments of order n

• Probability density functions

• Autocorrelation functions

• Autospectral density functions

• Joint probability density functions

• Cross-correlation functions



ANALYSIS OF RANDOM DATA 15 

(d) 

Figure 1.11 Four special time histories, (a) Sine wave, (b) Sine wave plus random noise, (c) Narrow 
bandwidth random noise, (d) Wide bandwidth random noise. 

The first three functions measure fundamental properties shared by the pair of 
records in the amplitude, time, or frequency domains. From knowledge of the cross-
spectral density function between the pair of records, as well as their individual 
autospectral density functions, one can compute theoretical linear frequency response 
functions (gain factors and phase factors) between the two records. Here, the two 
records are treated as a single-input/single-output problem. The coherence function is 
a measure of the accuracy of the assumed linear input/output model and can also be 
computed from the measured autospectral and cross-spectral density functions. 
Detailed discussions of these topics appear in Chapters 5, 6, and 7. 
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Figure 1.12 Probability density function plots, (a) Sine wave, (b) Sine wave plus random noise, 
(c) Narrow bandwidth random noise, (d) Wide bandwidth random noise. 

Common applications of probability density and distribution functions, beyond a 
basic probabilistic description of data values, include 

1. Evaluation of normality 

2. Detection of data acquisition errors 

3. Indication of nonlinear effects 

4. Analysis of extreme values 

Probability density functions
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Autocorrelation functions

Figure 1.13 Autocorrelation function plots, (a) Sine wave, (b) Sine wave plus random noise, (c) Narrow 
bandwidth random noise, (d) Wide bandwidth random noise. 
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Autospectral density functions
18 BASIC DESCRIPTIONS AND PROPERTIES 

Figure 1.14 Autospectral density function plots, (a) Sine wave, (b) Sine wave plus random noise, 
(c) Narrow bandwidth random noise, (d) Wide bandwidth random noise. 

The primary applications of correlation measurements include 

1. Detection of periodicities 

2. Prediction of signals in noise 

3. Measurement of time delays 

4. Location of disturbing sources 

5. Identification of propagation paths and velocities 



Characterization of  Measurement 
Systems

A simple instrument model

• An observable variable X is obtained from the measurand.

• X is related to the measurand in some KNOWN way (i.e., measuring mass)

• The sensor generates a signal variable that can be manipulated: 

• Processed, transmitted or displayed

• In the example above the signal is passed to a display, where a measurement 
can be taken

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University
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Measurements
A simple instrument model

A observable variable X is obtained from the measurand
X is related to the measurand in some KNOWN way (i.e., measuring mass)

The sensor generates a signal variable that can be manipulated:
Processed, transmitted or displayed

In the example above the signal is passed to a display, where a 
measurement can be taken

Measurement
The process of comparing an unknown quantity with a standard of the 
same quantity (measuring length) or standards of two or more related 
quantities (measuring velocity)
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Systems

A simple instrument model

Measurement

• The process of comparing an unknown quantity with 
a standard of the same quantity (measuring length) 
or standards of two or more related quantities 
(measuring velocity)
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Calibration
The relationship between the physical measurement variable 
(X) and the signal variable (S)

A sensor or instrument is calibrated by applying a number of KNOWN 
physical inputs and recording the response of the system

Physical input (X)
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Characterization of  Measurement 
Systems

The relationship between the 
physical measurement variable 
(X) and the signal variable (S)

• A sensor or instrument is 
calibrated by applying a 
number of KNOWN physical 
inputs and recording the 
response of the system.
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Additional inputs
Interfering inputs (Y)

Those that the sensor to respond as the linear superposition with the 
measurand variable X 

Linear superposition assumption: S(aX+bY)=aS(X)+bS(Y)

Modifying inputs (Z)
Those that change the behavior of the 
sensor and, hence, the calibration curve

Temperature is a typical modifying input

Si
gn
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pu
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Physical input (X)

Z=Z1

Z=Z2

Sensor

Physical variable X Signal
variable 

SMeasurand Interfering input Y

Modifying 
input Z

Sensor

Physical variable X Signal
variable 

SMeasurandMeasurand Interfering input Y

Modifying 
input Z

Characterization of  Measurement 
Systems

Interfering inputs (Y)

• Those that the sensor to respond as the linear 
superposition with the measurand variable X.

• Linear superposition assumption: S(aX
+bY)=aS(X)+bS(Y)
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Modifying inputs (Z)

• Those that change the 
behavior of the sensor and, 
hence, the calibration curve

• Temperature is a typical 
modifying input.
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Characterization of  Measurement 
Systems

Static characteristics

•The properties of the system after all transient effects have settled to their 
final or steady state.

•Accuracy

•Discrimination

•Precision

•Errors

•Drift

•Sensitivity

•Linearity

•Hystheresis



Dynamic characteristics

• The properties of the system transient response 
to an input.

• Zero order systems.

• First order systems.

• Second order systems.

Characterization of  Measurement 
Systems



Ejemplo - Calibración

• Ejemplo. Un sistema de 
medida de altura usando 
pulsos de luz. La tabla 
muestra los valores reales y 
los medidos (con error) 
cuando se incrementa la 
distancia y cuando se 
disminuye.



Ejemplo - Calibración



• In general when f is a function of x,y,z,

Combination of errors

3.2 ERROR PROPAGATION 21

Table 3.1 Propagation of standard uncertainties in combined
quantities or functions.

f = x + y or f = x − y σ 2
f = σ 2

x + σ 2
y

f = xy or f = x/y (σf /f )2 = (σx/x)2 + (σy/y)2

f = xyn or f = x/yn (σf /f )2 = (σx/x)2 + n2(σy/y)2

f = ln x σf = σx/x
f = ex σf = fσx

sources can be either + or − and will often partly compensate each other.
The correct way to “add up” uncertainties is to take the square root of the
sum of the squares of the individual uncertainties. More specifically, this
applies to standard deviations σ :

If f = x + y, then σ 2
f = σ 2

x + σ 2
y , (3.4)

i.e., independent uncertainties add up quadratically. Why this is so is
explained in Appendix A1 on page 135. In general, when f is a function
of x, y, z, . . .;

σ 2
f =

(
∂f
∂x

)2

σ 2
x +

(
∂f
∂y

)2

σ 2
y + · · · (3.5)

From (3.5) it follows immediately that for additions and subtractions the
absolute uncertainties add up quadratically, while for multiplications and
divisions the relative uncertainties add up quadratically. Examples of (3.5)
are given in Table 3.1, valid for independent contributions.

Example 1

Consider the example of (3.2). What is the s.d. in K = [A2]/[A]2 when the
deviations in [A] and [A2] are independent? From the x/yn rule in Table 3.1
it follows that

(σK

K

)2
=

(
σ[A2]
[A2]

)2

+ 4
(

σ[A]
[A]

)2

.

Suppose you have measured [A2] = 0.010 ± 0.001 mol/L and [A] = 0.100 ±
0.004 mol/L. Then the relative s.d. of K becomes

√
0.12 + 4.0.042 = 0.13,

resulting in K = 1.0 ± 0.1 L/mol.
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