
Optical Metrology
Lecture 3: Basic Optical Principles and Imaging Systems



Optical Metrology History
Vision-Based Metrology refers to the technology using 
optical sensors and digital image processing 
hardware and software to:

• Identify

• Guide

• Inspect

• Measure objects



Optical Metrology History
Vision-Based Metrology inspection systems evolved 
from the combination of microscopes, cameras and 
optical comparators.

“The combination of vision, 
autofocus laser, rotary indexer, 
and tactile input allows to even 
measure features and geometry 
you can’t see,” Frost says. 
Measurement can be expressed 
as 3D reports in the forms of 
charts and models as opposed to 
long tables of X-Y data. This 
makes reporting and decision 
making much faster and easier.

http://blog.nikonmetrology.com/blog/groundbreaking-cmm-manager-3-5-software-now-available-nikon-metrology-inexiv-vision-measuring-equipment/



Optical Metrology History
Vision-Based Metrology is extensively used in general industrial 
applications such as the manufacturing of:

• Electronics

• Automotive

• Aerospace

• Pharmaceutical

• Consumer products

Vision-Based Metrology is being utilized in the automatic identification and 
data collection market as a complementary or alternative technology to 
traditional laser scanning devices for reading bar codes.



Optical Metrology History
Early systems were integrated 
into packaging lines for optical 
character recognition to check 
the accuracy of product codes 
and label information.

Today, high-resolution cameras, 
advances in software and 
imaging processors, and the 
availability of powerful, 
inexpensive compact 
computers have made vision 
systems faster and more 
reliable than ever.



Who needs a vision system?
• Vision system may be needed 

for high production product 
inspection CD and pharma 
industries

• They provide a means of 
increasing yield-that is, the 
ratio of good parts to bad parts.

• When a serial defect is 
spotted, the system not only 
recognizes it but can stop the 
conveyor and inform the 
operator of the defect and its 
magnitude.

http://www.cognex.com/CognexInfo/PressReleases/PressRelease.aspx?id=11858&langtype=1033



Vision system - Automobiles
• Vision Based 

Metrology is now 
being used to focus on 
the movement of 
objects along with 
their deformation

• This is being used in 
many car wreck 
investigations



Vision system - Automobiles
• Two consecutive images were grabbed from a high speed video 

sequence

• A displacement field of a car at a certain moment is presented

• The deformation pattern was obtained from the principle vector 
analysis

• This analysis allows the representation of the deformation pattern.
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� Two consecutive images were grabbed from a high speed video 

sequence

� A displacement field of a car at a certain moment is presented

� The deformation pattern was obtained from the principle vector 

analysis

� This analysis allows the representation of the deformation pattern

Vision system - Automobiles



Vision system - Deformation

http://iiw.kuleuven.be/onderzoek/mem2p/research/dic



Basic Optical 
Principles



A snapshot of a harmonic wave that propagates in z-direction

Wave Motion. The Electromagnetic 
Spectrum
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Figure 1.1 Harmonic wave

Table 1.1 The electromagnetic spectrum (From Young (1968))

The ratio of the speed c of an electromagnetic wave in vacuum to the speed v in a medium
is known as the absolute index of refraction n of that medium

n = c

v
(1.3)

The electromagnetic spectrum is given in Table 1.1.
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1.1 INTRODUCTION

Before entering into the different techniques of optical metrology some basic terms and
definitions have to be established. Optical metrology is about light and therefore we must
develop a mathematical description of waves and wave propagation, introducing important
terms like wavelength, phase, phase fronts, rays, etc. The treatment is kept as simple as
possible, without going into complicated electromagnetic theory.

1.2 WAVE MOTION. THE ELECTROMAGNETIC
SPECTRUM

Figure 1.1 shows a snapshot of a harmonic wave that propagates in the z-direction. The
disturbance ψ(z, t) is given as

ψ(z, t) = U cos
[
2π

( z

λ
− νt

)
+ δ

]
(1.1)

The argument of the cosine function is termed the phase and δ the phase constant. Other
parameters involved are

U = the amplitude
λ = the wavelength
ν = the frequency (the number of waves per unit time)
k = 2π/λ the wave number

The relation between the frequency and the wavelength is given by

λν = v (1.2)

where

v = the wave velocity

ψ(z, t) might represent the field in an electromagnetic wave for which we have

v = c = 3 × 108 m/s
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The disturbance is given by:
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The relation between frequency and 
wavelength:
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THE PLANE WAVE. LIGHT RAYS 3

Although it does not really affect our argument, we shall mainly be concerned with
visible light where

λ = 400–700 nm (1 nm = 10−9 m)
ν = (4.3–7.5) × 1014 Hz

1.3 THE PLANE WAVE. LIGHT RAYS

Electromagnetic waves are not two dimensional as in Figure 1.1, but rather three-dimen-
sional waves. The simplest example of such waves is given in Figure 1.2 where a plane
wave that propagates in the direction of the k-vector is sketched. Points of equal phase
lie on parallel planes that are perpendicular to the propagation direction. Such planes are
called phase planes or phase fronts. In the figure, only some of the infinite number of
phase planes are drawn. Ideally, they should also have infinite extent.

Equation (1.1) describes a plane wave that propagates in the z-direction. (z = constant
gives equal phase for all x, y, i.e. planes that are normal to the z-direction.) In the general
case where a plane wave propagates in the direction of a unit vector n, the expression
describing the field at an arbitrary point with radius vector r = (x, y, z) is given by

ψ(x, y, z, t) = U cos[kn · r − 2πνt + δ] (1.4)

That the scalar product fulfilling the condition n · r = constant describes a plane which
is perpendicular to n is shown in the two-dimensional case in Figure 1.3. That this is
correct also in the three-dimensional case is easily proved.
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Figure 1.2 The plane wave

https://dribbble.com/shots/1515226-Rain-Bros



The Plane Wave. Light Rays
• EM waves are not 2D, but 3D.
• A plane wave that propagates in the direction of k-vector.
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Points of equal phase…

Note: Only some of the infinite 
number of phase planes are drawn. 
Ideally, they should also have 
infinite extent.



The Plane Wave. Light Rays
In the general case where a plane wave propagates in the 
direction of a unit vector n, the expression describing the field at 
an arbitrary point with radius vector r = (x, y, z) is given by:
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The scalar product fulfilling the condition n · r = constant 
describes a plane which is perpendicular to n4 BASICS
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Next we give the definition of light rays. They are directed lines that are everywhere
perpendicular to the phase planes. This is illustrated in Figure 1.4 where the cross-section
of a rather complicated wavefront is sketched and where some of the light rays perpen-
dicular to the wavefront are drawn.

1.4 PHASE DIFFERENCE

Let us for a moment turn back to the plane wave described by Equation (1.1). At two
points z1 and z2 along the propagation direction, the phases are φ1 = kz1 − 2πνt + δ and
φ2 = kz2 − 2πνt + δ respectively, and the phase difference

%φ = φ1 − φ2 = k(z1 − z2) (1.5)

Hence, we see that the phase difference between two points along the propagation direction
of a plane wave is equal to the geometrical path-length difference multiplied by the wave
number. This is generally true for any light ray. When the light passes a medium different
from air (vacuum), we have to multiply by the refractive index n of the medium, such that

optical path length = n × (geometrical path length)

phase difference = k × (optical path length)



Light Rays. They are directed lines that are everywhere 
perpendicular to the phase planes 

The Plane Wave. Light Rays
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wavefront concept.
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Figure 2.4. Cross section of
a spherical wave.



Phase Difference
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a plane wave is equal to the geometrical path-length difference multiplied by 
the wave number.
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Complex Notation. Complex Amplitude
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1.1 INTRODUCTION

Before entering into the different techniques of optical metrology some basic terms and
definitions have to be established. Optical metrology is about light and therefore we must
develop a mathematical description of waves and wave propagation, introducing important
terms like wavelength, phase, phase fronts, rays, etc. The treatment is kept as simple as
possible, without going into complicated electromagnetic theory.
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Can be written as

OBLIQUE INCIDENCE OF A PLANE WAVE 5

1.5 COMPLEX NOTATION. COMPLEX AMPLITUDE

The expression in Equation (1.4) can be written in complex form as

ψ(x, y, z, t) = Re{Uei(φ−2πvt)} (1.6a)

where
φ = kn · r + δ (1.6b)

is the spatial dependent phase. In Appendix A, some simple arithmetic rules for complex
numbers are given.

In the description of wave phenomena, the notation of Equation (1.6) is commonly
adopted and ‘Re’ is omitted because it is silently understood that the field is described
by the real part.

One advantage of such complex representation of the field is that the spatial and
temporal parts factorize:

ψ(x, y, z, t) = Uei(φ−2πνt) = Ueiφe−i2πvt (1.7)

In optical metrology (and in other branches of optics) one is most often interested in
the spatial distribution of the field. Since the temporal-dependent part is known for each
frequency component, we therefore can omit the factor e−i2πvt and only consider the
spatial complex amplitude

u = Ueiφ (1.8)

This expression describes not only a plane wave, but a general three-dimensional wave
where both the amplitude U and the phase φ may be functions of x, y and z.

Figure 1.5(a, b) shows examples of a cylindrical wave and a spherical wave, while in
Figure 1.5(c) a more complicated wavefront resulting from reflection from a rough surface
is sketched. Note that far away from the point source in Figure 1.5(b), the spherical
wave is nearly a plane wave over a small area. A point source at infinity, represents a
plane wave.

1.6 OBLIQUE INCIDENCE OF A PLANE WAVE

In optics, one is often interested in the amplitude and phase distribution of a wave over
fixed planes in space. Let us consider the simple case sketched in Figure 1.6 where a
plane wave falls obliquely on to a plane parallel to the xy-plane a distance z from it. The
wave propagates along the unit vector n which is lying in the xz-plane (defined as the
plane of incidence) and makes an angle θ to the z-axis. The components of the n- and
r-vectors are therefore

n = (sin θ, 0, cos θ )
r = (x, y, z)

where
spatial dependent phase

OBLIQUE INCIDENCE OF A PLANE WAVE 5

1.5 COMPLEX NOTATION. COMPLEX AMPLITUDE

The expression in Equation (1.4) can be written in complex form as

ψ(x, y, z, t) = Re{Uei(φ−2πvt)} (1.6a)

where
φ = kn · r + δ (1.6b)

is the spatial dependent phase. In Appendix A, some simple arithmetic rules for complex
numbers are given.

In the description of wave phenomena, the notation of Equation (1.6) is commonly
adopted and ‘Re’ is omitted because it is silently understood that the field is described
by the real part.

One advantage of such complex representation of the field is that the spatial and
temporal parts factorize:

ψ(x, y, z, t) = Uei(φ−2πνt) = Ueiφe−i2πvt (1.7)

In optical metrology (and in other branches of optics) one is most often interested in
the spatial distribution of the field. Since the temporal-dependent part is known for each
frequency component, we therefore can omit the factor e−i2πvt and only consider the
spatial complex amplitude

u = Ueiφ (1.8)

This expression describes not only a plane wave, but a general three-dimensional wave
where both the amplitude U and the phase φ may be functions of x, y and z.

Figure 1.5(a, b) shows examples of a cylindrical wave and a spherical wave, while in
Figure 1.5(c) a more complicated wavefront resulting from reflection from a rough surface
is sketched. Note that far away from the point source in Figure 1.5(b), the spherical
wave is nearly a plane wave over a small area. A point source at infinity, represents a
plane wave.

1.6 OBLIQUE INCIDENCE OF A PLANE WAVE

In optics, one is often interested in the amplitude and phase distribution of a wave over
fixed planes in space. Let us consider the simple case sketched in Figure 1.6 where a
plane wave falls obliquely on to a plane parallel to the xy-plane a distance z from it. The
wave propagates along the unit vector n which is lying in the xz-plane (defined as the
plane of incidence) and makes an angle θ to the z-axis. The components of the n- and
r-vectors are therefore

n = (sin θ, 0, cos θ )
r = (x, y, z)

Spatial and temporal 
parts factorize

OBLIQUE INCIDENCE OF A PLANE WAVE 5

1.5 COMPLEX NOTATION. COMPLEX AMPLITUDE

The expression in Equation (1.4) can be written in complex form as

ψ(x, y, z, t) = Re{Uei(φ−2πvt)} (1.6a)

where
φ = kn · r + δ (1.6b)

is the spatial dependent phase. In Appendix A, some simple arithmetic rules for complex
numbers are given.

In the description of wave phenomena, the notation of Equation (1.6) is commonly
adopted and ‘Re’ is omitted because it is silently understood that the field is described
by the real part.

One advantage of such complex representation of the field is that the spatial and
temporal parts factorize:

ψ(x, y, z, t) = Uei(φ−2πνt) = Ueiφe−i2πvt (1.7)

In optical metrology (and in other branches of optics) one is most often interested in
the spatial distribution of the field. Since the temporal-dependent part is known for each
frequency component, we therefore can omit the factor e−i2πvt and only consider the
spatial complex amplitude

u = Ueiφ (1.8)

This expression describes not only a plane wave, but a general three-dimensional wave
where both the amplitude U and the phase φ may be functions of x, y and z.

Figure 1.5(a, b) shows examples of a cylindrical wave and a spherical wave, while in
Figure 1.5(c) a more complicated wavefront resulting from reflection from a rough surface
is sketched. Note that far away from the point source in Figure 1.5(b), the spherical
wave is nearly a plane wave over a small area. A point source at infinity, represents a
plane wave.

1.6 OBLIQUE INCIDENCE OF A PLANE WAVE

In optics, one is often interested in the amplitude and phase distribution of a wave over
fixed planes in space. Let us consider the simple case sketched in Figure 1.6 where a
plane wave falls obliquely on to a plane parallel to the xy-plane a distance z from it. The
wave propagates along the unit vector n which is lying in the xz-plane (defined as the
plane of incidence) and makes an angle θ to the z-axis. The components of the n- and
r-vectors are therefore

n = (sin θ, 0, cos θ )
r = (x, y, z)

In Optical Metrology interest 
lies in spatial distribution
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(a)

(b)

(c)

Figure 1.5 ((a) and (b) from Hecht & Zajac (1974), Figures 2.16 and 2.17. Reprinted with
permission.)
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Figure 1.6

A more complicated wavefront resulting from 
reflection from a rough surface



The Spherical Wave
A spherical wave, is a wave emitted by a point source, given by:
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These expressions put into Equation (1.6) (Re and temporal part omitted) give

u = Ueik(x sin θ+z cos θ) (1.9a)

For z = 0 (the xy-plane) this reduces to

u = Ueikx sin θ (1.9b)

1.7 THE SPHERICAL WAVE

A spherical wave, illustrated in Figure 1.5(b), is a wave emitted by a point source. It
should be easily realized that the complex amplitude representing a spherical wave must
be of the form

u = U

r
eikr (1.10)

where r is the radial distance from the point source. We see that the phase of this wave is
constant for r = constant, i.e. the phase fronts are spheres centred at the point source. The
r in the denominator of Equation (1.10) expresses the fact that the amplitude decreases
as the inverse of the distance from the point source.

Consider Figure 1.7 where a point source is lying in the x0, y0-plane at a point of
coordinates x0, y0. The field amplitude in a plane parallel to the x0y0-plane at a distance
z then will be given by Equation (1.10) with

r =
√

z2 + (x − x0)2 + (y − y0)2 (1.11)

where x, y are the coordinates of the illuminated plane. This expression is, however, rather
cumbersome to work with. One therefore usually makes some approximations, the first
of which is to replace z for r in the denominator of Equation (1.10). This approximation
cannot be put into the exponent since the resulting error is multiplied by the very large

z

x0
x

(x0, y0)

(x, y)
y0 y

z

Figure 1.7

r is the radial distance to the point source.

The amplitude decreases as the inverse of the distance from the 
point source.
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Consider a point source in (x0,y0),
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The field amplitude in a plane parallel to the x0y0-plane at a distance z, 
approximating r by a binomial expansion, 
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number k. A convenient means for approximation of the phase is offered by a binomial
expansion of the square root, viz.

r = z

√

1 +
(

x − x0

z

)2

+
(

y − y0

z

)2

≈ z

[

1 + 1
2

(
x − x0

z

)2

+ 1
2

(
y − y0

z

)2
]

(1.12)

where r is approximated by the two first terms of the expansion.
The complex field amplitude in the xy-plane resulting from a point source at x0, y0 in

the x0y0-plane is therefore given by

u(x, y, z) = U

z
eikzei(k/2z)[(x−x0)

2+(y−y0)
2] (1.13)

The approximations leading to this expression are called the Fresnel approximations. We
shall here not discuss the detailed conditions for its validity, but it is clear that (x − x0)
and (y − y0) must be much less than the distance z.

1.8 THE INTENSITY

With regard to the registration of light, we are faced with the fact that media for direct
recording of the field amplitude do not exist. The most common detectors (like the eye,
photodiodes, multiplication tubes, photographic film, etc.) register the irradiance (i.e. effect
per unit area) which is proportional to the field amplitude absolutely squared:

I = |u|2 = U 2 (1.14)

This important quantity will hereafter be called the intensity.
We mention that the correct relation between U 2 and the irradiance is given by

I = εv

2
U 2 (1.15)

where v is the wave velocity and ε is known as the electric permittivity of the medium.
In this book, we will need this relation only when calculating the transmittance at an
interface (see Section 9.5).

1.9 GEOMETRICAL OPTICS

For completeness, we refer to the three laws of geometrical optics:

(1) Rectilinear propagation in a uniform, homogeneous medium.

(2) Reflection. On reflection from a mirror, the angle of reflection is equal to the angle of
incidence (see Figure 1.8). In this context we mention that on reflection (scattering)
from a rough surface (roughness >λ) the light will be scattered in all directions (see
Figure 1.9).
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Fresnel approximation.



The Intensity
Recording of field amplitude is impossible. 

Most devices register irradiance (effect per unit area).

It is proportional to field amplitude square:
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Geometrical Optics
The three laws of geometrical optics:

1. Rectilinear propagation in a uniform, 
homogeneous medium.

2. Reflection. On reflection from a mirror, the 
angle of reflection is equal to the angle of 
incidence (see Figure 1.8). In this context we 
mention that on reflection (scattering) from a 
rough surface (roughness >λ) the light will be 
scattered in all directions (see Figure 1.9).
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Figure 1.8 The law of reflection

Figure 1.9 Scattering from a rough surface

(3) Refraction. When light propagates from a medium of refractive index n1 into a
medium of refractive index n2, the propagation direction changes according to

n1 sin θ1 = n2 sin θ2 (1.16)

where θ1 is the angle of incidence and θ2 is the angle of emergence (see Figure 1.10).
From Equation (1.16) we see that when n1 > n2, we can have θ2 = π/2. This occurs
for an angle of incidence called the critical angle given by

sin θ1 = n2

n1
(1.17)

This is called total internal reflection and will be treated in more detail in Section 9.5.
Finally, we also mention that for light reflected at the interface in Figure 1.10,

when n1 < n2, the phase is changed by π .

q1

q2

n1

n2

Figure 1.10 The law of refraction
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The Simple Convex (Positive) Lens
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1.10 THE SIMPLE CONVEX (POSITIVE) LENS

We shall here not go into the general theory of lenses, but just mention some of the more
important properties of a simple, convex, ideal lens. For more details, see Chapter 2 and
Section 4.6.

Figure 1.11 illustrates the imaging property of the lens. From an object point Po, light
rays are emitted in all directions. That this point is imaged means that all rays from Po
which pass the lens aperture D intersect at an image point Pi.

To find Pi, it is sufficient to trace just two of these rays. Figure 1.12 shows three of
them. The distance b from the lens to the image plane is given by the lens formula

1
a

+ 1
b

= 1
f

(1.18)

and the transversal magnification

m = hi

ho
= b

a
(1.19)

In Figure 1.13(a), the case of a point source lying on the optical axis forming a spherical
diverging wave that is converted to a converging wave and focuses onto a point on the
optical axis is illustrated. In Figure 1.13(b) the point source is lying on-axis at a distance

Po

a b

ff Pi

D

Figure 1.11

ho

hi

Figure 1.12
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(a) A point source lying on the optical 
axis forming a spherical diverging 
wave that is converted to a 
converging wave and focuses onto 
a point on the optical axis

(b) The point source is lying on-axis at 
a distance from the lens equal to 
the focal length f. We then get a 
plane wave that propagates along 
the optical axis.

(c) The point source is displaced 
along the focal plane a distance h 
from the optical axis. We then get 
a plane wave propagating in a 
direction that makes an angle θ to 
the optical axis where

A PLANE-WAVE SET-UP 11
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from the lens equal to the focal length f . We then get a plane wave that propagates along
the optical axis. In Figure 1.13(c) the point source is displaced along the focal plane a
distance h from the optical axis. We then get a plane wave propagating in a direction that
makes an angle θ to the optical axis where

tan θ = h/f (1.20)

1.11 A PLANE-WAVE SET-UP

Finally, we refer to Figure 1.14 which shows a commonly applied set-up to form a
uniform, expanded plane wave from a laser beam. The laser beam is a plane wave with
a small cross-section, typically 1 mm. To increase the cross-section, the beam is first
directed through lens L1, usually a microscope objective which is a lens of very short
focal length f1. A lens L2 of greater diameter and longer focal length f2 is placed as
shown in the figure. In the focal point of L1 a small opening (a pinhole) of diameter
typically 10 µm is placed. In that way, light which does not fall at the focal point is
blocked. Such stray light is due to dust and impurities crossed by the laser beam on its

L1

f1

L2

f2

Figure 1.14 A plane wave set-up
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• The set-up to form a uniform, expanded plane wave from a laser beam. 
• The laser beam is a plane wave with a small cross-section, typically 1 

mm. To increase the cross-section, the beam is first directed through lens 
L1, usually a microscope objective which is a lens of very short focal 
length f1. 

• A lens L2 of greater diameter and longer focal length f2 is placed as 
shown in the figure. 

• In the focal point of L1 a small opening (a pinhole) of diameter typically 
10 μm is placed. In that way, light which does not fall at the focal point is 
blocked.

• Such stray light is due to dust and impurities crossed by the laser beam 
on its way via other optical elements (like mirrors, beamsplitters, etc.) 
and it causes the beam not to be a perfect plane wave.



81

Image Formation – Lenses
� A lens is a transparent medium bounded by two 

curved surfaces (spherical or cylindrical)

� Line passing normally through both bounding 
surfaces of a lens is called the optic axis. 

� The point O on the optic axis midway between the 
two bounding surfaces is called the optic centre. 

� There are 2 basic kinds: converging, diverging

� Converging lens - brings all incident light-rays 
parallel to its optic axis together at a point F, behind 
the lens, called the focal point, or focus. 

� Diverging lens spreads out all incident light-rays parallel to its optic 
axis so that they appear to diverge from a virtual focal point F in front 
of the lens. 

� Front side is conventionally to be the side from which the light is 
incident. 
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Image Formation – Lenses
� Relationship between object and image distances to 

focal length is given by

� Magnification of the lens is given by 

� Example (Object outside Focal Point)
� Object distance S = 200mm Object height h = 1mm

� Focal length of the lens f = 50mm 

� Find image distance S’ and Magnification m
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Image Formation – Lenses
� Relationship between object and image distances to 

focal length is given by

� Magnification of the lens is given by 

� Example (Object inside Focal Point)
� Object distance S = 30mm Object height h = 1mm

� Focal length of the lens f = 50mm 

� Find image distance S’ and Magnification m
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Image Formation – Lenses
� Relationship between object and image distances to 

focal length is given by

� Magnification of the lens is given by 

� Example (Object at Focal Point)
� Object distance S = 30mm Object height h = 1mm

� Focal length of the lens f = -50mm (diverging lens)

� Find image distance S’ and Magnification m
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F-Number and NA
� The calculations used to determine 

lens dia are based on the concepts 
of focal ratio (f-number) and 
numerical aperture (NA). 

� The f-number is the ratio of the 
lens focal length of the to its clear 
aperture (effective diameter I).

� The f-number defines the angle of the cone of 
light leaving the lens which ultimately forms 
the image. 

� The other term used commonly in defining 
this cone angle is numerical aperture NA. 

� NA is the sine of the angle made by the 
marginal ray with the optical axis. By using 
simple trigonometry, it can be seen that
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� Spherical aberration comes from the spherical 
surface of a lens

� The further away the rays from the lens center, the 
bigger the error is 

� Common in single lenses. 

� The distance along the optical axis between the 
closest and farthest focal points is called (LSA)

� The height at which these rays is called (TSA)

� TSA = LSA X tan u″

� Spherical aberration is dependent on lens shape, 
orientation and index of refraction of the lens

� Aspherical lenses offer best solution, but difficult 
to manufacture

� So cemented doublets (+ve and –ve) are used to 
eliminate this aberration

Spherical Aberration
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� When an off-axis object is focused by a spherical lens, the natural 
asymmetry leads to astigmatism. 

� The system appears to have two different focal lengths. Saggital and 
tangential planes

� Between these conjugates, the image is either an elliptical or a circular 
blur. Astigmatism is defined as the separation of these conjugates. 

Astigmatism

� The amount of astigmatism depends on lens 
shape
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Optics, E. Hecht, 
p. 224.

Astigmatism
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Astigmatism



93

Chromatic Aberration

� Material usually have 
different refractive indices 
for different wavelengths 
nblue>nred

� This is dispersion

� blue reflects more than the 
red, blue has a closer 
focus


