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Introduction
Phase-shifting surface profile 
measurement is an important branch 
in optical metrology. 

It has many unique features such as 
varieties of configurations, high 
resolution, high accuracy, good 
repeatability, fast measurement 
speed, and superior surface finish 
tolerance. 

Digital image devices have enabled 
automated processing of phase-
shifting images at high speed over a 
full field of view (FOV), further 
enabling superfast 3D measurement 
without scanning.
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7.2.1.1 Interference Fringe Pattern

An interference pattern is well known in optical interferometers. When two coherent light 
beams with common polarization superpose in an area, at each point, the resulting light 
intensity, shown as grayscale in a camera, depends on the optical path difference (OPD) 
between these two light sources reaching this point. The OPD results in phase difference 
at a certain point, destructive or constructive, forming periodic pattern on the object sur-
face. A good example is the famous Young’s experiment in optics.1

In optical metrology, the two slots in Young’s experiment are usually replaced by a split-
ter, either polarized or nonpolarized, to generate two wave fronts: one is a measurement 
wave front that is modulated by the geometric variation of the surface, and the other is a 
reference wave front under good control. When these two wave fronts superpose, the dif-
ference between them is revealed in an interference fringe pattern. A typical Michelson 
interferometer is shown in Figure 7.1a. Adjusting the tilting angle of the reference mirror 
will change the pitch of the fringe pattern. This interferometer has very high resolution, up 
to hundredth of wavelength, but the FOV is usually limited because the light beam diam-
eter after expansion has to be slightly larger than the FOV so as to confirm to the related 
components. For large FOV measurements, the system will be too large and too costly.

To measure a large area with a small instrument footprint, a technique called Accordion 
Fringe Interferometry (AFI) was developed at MIT’s Lincoln Laboratory in 1990s,2 as 
shown in Figure 7.1b. AFI uses two-point lasers to illuminate the target divergently and a 
camera to record the interference fringe pattern that is modulated by the surface geometry 
of the sample under measurement. It also provides excellent accuracy performance with a 
large FOV but small footprint. Because the fringe pattern results from laser interference, 
the depth of focus for the fringe projection unit is infinite.

7.2.1.2 Moiré Pattern

A shadow moiré pattern looks like an interference pattern, but its geometric interference 
principle is very different.3–5 Figure 7.2a shows a representative shadow moiré fringe 
image. It is generated by covering the measurement area with a physical grating while 
illuminating and viewing the area from an opposite direction, as shown in Figure 7.2b. 
When light passes through the grating at a tilted angle, a shadow of the grating will be 
generated on the sample surface. When this shadow is observed at a tilted angle from 
the opposite direction to the light source, a moiré pattern can be seen that represents the 
topology of the surface with the peak/valley rings representing the same height relative 
to the physical grating.
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FIGURE 7.1
Interferometers: (a) Michelson interferometer and (b) AFI.

Fringe Pattern: Interference

A fringe pattern is a periodic 
grayscale pattern with 
alternative dark and bright 
areas. 

Based on pattern generation 
principles, the most common 
fringe pattern can be classified 
into three categories: 
interference pattern, moiré 
pattern, and projected pattern. Michelson Interferometer
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The interference term is therefore of the form

cos
2π

d
(z sin θ − x cos θ) (3.20)

By comparing this expression with the real part of Equation (1.9a), we see that
Equation (3.20) can be regarded as representing a plane wave with its propagation
direction lying in the xz-plane making an angle θ with the x-axis as depicted in Figure 3.3,

Fringe Pattern: Moiré
Looks like an interference pattern, but 
geometric interference principle is different.

It is generated by covering the 
measurement area with a physical grating 
while illuminating and viewing the area 
from an opposite direction. 

When light passes through the grating at a 
tilted angle, a shadow of the grating will be 
generated on the sample surface. 

When this shadow is observed at a tilted 
angle from the opposite direction to the 
light source, a moiré pattern can be seen 
that represents the topology of the surface 
with the peak/valley rings representing the 
same height relative to the physical 
grating.
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7.2.1.3 Fringe Projection with a Physical Grating

When a transmission grating with a sinusoidal transmission profile such as holographic 
gratings is placed between a light source and a projection lens, the projected fringe pat-
tern will also have a sinusoidal intensity profile, as shown in Figure 7.3a.6 If a straight-line 
grating with a nonsinusoidal profile such as a ruled grating is used, the projection lens is 
usually defocused slightly so that a pseudo-sinusoidal pattern can be obtained. Figure 7.3b 
shows a projected fringe on an edge break.

Another technique called projection moiré requires a second physical grating to be 
placed before the camera lens.7 The second grating can have a different pitch than that of 
the first grating used for fringe projection. In this configuration, a traditional moiré pat-
tern will be captured in the imaging system. This technique is out of focus of this chapter 
but has been covered in Chapter 8.

7.2.1.4 Digital Fringe Projection

In digital fringe projection,8–10 the fringe pattern can be generated with theoretically any 
intensity profile using computer software and projected to the object surface through an 
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FIGURE 7.3
Projection moiré: (a) setup and (b) pattern.
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FIGURE 7.2
Shadow moiré: (a) moiré pattern and (b) setup.
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FIGURE 7.2
Shadow moiré: (a) moiré pattern and (b) setup.

Fringe Pattern: Projection with physical grating

When a transmission grating with a sinusoidal transmission profile 
such as holographic gratings is placed between a light source and a 
projection lens, the projected fringe pattern will also have a sinusoidal 
intensity profile.

If a straight-line grating with a 
nonsinusoidal profile such as a ruled 
grating is used, the projection lens is 
usually defocused slightly so that a 
pseudo-sinusoidal pattern can be 
obtained



Fringe Pattern: Digital Fringe Projection

• The fringe pattern can be generated with theoretically any 
intensity profile using computer software and projected to the 
object surface through an off-the-shelf digital projector such as 
liquid crystal device (LCD), digital mirror device (DMD), and 
liquid crystal on silicon (LCOS) projectors. 291Phase-Shifting Systems and Phase-Shifting Analysis
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off-the-shelf digital projector such as liquid crystal device (LCD), digital mirror device 
(DMD), and liquid crystal on silicon (LCOS) projectors. This provides a low-cost and flex-
ible solution for fringe projection techniques. Figure 7.4 shows the typical set up and two 
projected fringe patterns.

7.2.1.5 Other Special Fringe Patterns

All fringe patterns discussed so far have sinusoidal or pseudo-sinusoidal intensity pro-
files. Sometimes, other special fringe patterns are also used for a specific purpose such as 
speed and simplicity considerations. These patterns include the trapezoidal pattern,11–13 
sawtooth,14 and slope profile. Because this chapter focuses on traditional phase-shifting 
techniques related to sinusoidal patterns, these special patterns and related algorithms 
are not investigated further. Interested readers can find details in the corresponding 
references.

7.2.2 Fringe Pattern Analysis

7.2.2.1 Contour Analysis

To extract the geometric information in the fringe pattern, an appropriate analysis meth-
odology has to be used. To better understand the challenges, it is necessary to take a look 
at the intensity profile of the captured fringe pattern image. Without losing generality, a 
representative cross section near the middle horizontal line of the fringe pattern depicted 
in Figure 7.2 is taken as an example shown in Figure 7.5.

Before the phase-shifting technique was invented, the only way to investigate the fringe 
pattern image was to count the peak and/or valley and follow the contour curve along the 
peaks and valleys,3 as demonstrated in Figure 7.6. The calibration process was to find the 
factor that converted the peak/valley into the height dimension and was used to estimate 
the height variation over the FOV. The denser these fringes are, the steeper the slope mag-
nitude is of the surface area. The resolution and accuracy of this analysis method was very 
low, and there is no way to identify the direction of the slopes from a single image without 
introducing a known tilt to the part, creating a bias fringe larger than any other expected 
slope. That is, by tilting the part, all slopes are made to be perturbations to that slope. The 
requirement for a bias greatly limits the use of such systems for measuring real parts.

Object

Computer

Camera
Projector
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FIGURE 7.4
Digital fringe projection: (a) setup, (b) straight fringe pattern, and (c) circular fringe pattern.
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7.2.2.2 Phase-Shifting Analysis

In the 1970s, thanks to the invention of digital cameras and computers, digital image 
analysis started to be used in optical metrology, and the phase-measuring methods 
became a reality that greatly improved the resolution, accuracy, speed, and repeatability 
of interferometers and moiré technology.15 Over the years, various phase-measuring 
methods have been developed, with the phase-shifting method being the technique most 
widely used.16,17
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FIGURE 7.5
Intensity profile of the middle horizontal cross section in the moiré fringe.

FIGURE 7.6
Contour showing peak (bright bands) and valley (dark bands).
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FIGURE 7.5
Intensity profile of the middle horizontal cross section in the moiré fringe.

FIGURE 7.6
Contour showing peak (bright bands) and valley (dark bands).

Before phase-shifting, the only 
way to investigate the fringe 
pattern image was to count the 
peak and/or valley and follow the 
contour curve along the peaks 
and valleys.
The calibration process was to 
find the factor that converted the 
peak/valley into the height 
dimension and was used to 
estimate the height variation over 
the FOV.
The resolution and accuracy of 
this analysis method was very 
low, and there is no way to 
identify the direction of the slopes 
from a single image.
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An entire phase-shifting analysis process is 
demonstrated in the figure using a three-step phase-
shifting algorithm. 
The three images in the left column are captured 
three fringe images of a master model with a 120° 
phase shift. The intensities of the three phase-shifted 
images at point (x, y) can be written as:
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An entire phase-shifting analysis process is demonstrated in Figure 7.7 using a three-
step phase-shifting algorithm. In Figure 7.7, the three images in the top row are captured 
three fringe images of a master model with a 120° phase shift. The intensities of the three 
phase-shifted images at point (x, y) can be written as
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where
I′(x, y) is the average intensity
I″(x, y) is the intensity modulation
ϕ(x, y) is the phase to be determined

By solving the earlier equations, phase ϕ(x, y) and image contrast γ(x, y) can be obtained as
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This wrapped phase map includes the modulo 2π discontinuity, as shown in Figure 7.8. 
The continuous phase map Φ(i, j) can be obtained by use of a phase-unwrapping algorithm, 
as shown in Figure 7.9. How to implement a fast and robust phase-unwrapping process 
in computer software programming for a complex irregular 2D geometry with various 
slopes and discontinuity, such as holes, requires one to have both programming skills and 
an understanding of the phase-unwrapping principle. This is a complex issue that will 
require an entire book to discuss.18

Because the values of the unwrapped phase depend on the starting point of the 
unwrapping process, the obtained phase map is a relative phase map and cannot be 
used directly to represent the surface geometry although it contains the geometric infor-
mation. For flat surfaces, the phase map can be either subtracted from a reference phase 
map or brought down to reveal the defects or qualitative geometric features, as shown 
in Figure 7.10. But for a complex geometry shape or quantitative dimension comparison 
with geometric tolerance, the difference among the actual surface geometry and phase 
map is obvious, as shown in the bottom row of Figure 7.7. However, when used with 
the appropriate model and phase-to-coordinate conversion algorithm,19,20 an accurate 3D 
shape can be reconstructed from the wrapped phase map, as shown in the bottom-right 
picture of Figure 7.7.
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demonstrated in the figure using a three-step phase-
shifting algorithm. 
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three fringe images of a master model with a 120° 
phase shift. The intensities of the three phase-shifted 
images at point (x, y) can be written as:
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Phase-Shifting Analysis: Unwrapping

This wrapped phase map includes the modulo 2π discontinuity, as 
shown in Fig 7.8. 
The continuous phase map Φ(i, j) can be obtained by use of a phase-
unwrapping algorithm as shown in Fig 7.9.
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7.2.2.3 Benefits of Phase-Shifting Analysis

The phase-shifting analysis enables full-field analysis in areas because it provides geomet-
ric information for all sampled points between intensity peak/valleys. The obtained phase 
map provides directional information such as the positive or negative slopes and convex 
or concave local curvatures, along both lateral and vertical directions.

The phase-shifting analysis obtains phase information from image contrast, not inten-
sity changes from peak to valley, thus enabling much higher accuracy and making the 
analysis tolerant to various surface finishes, including shiny surfaces on some parts. 
Figure 7.11 shows how the phase-shifting technique can be used to obtain dimensional 
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Profile of an unwrapped phase map without 2π discontinuity.
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Phase-Shifting Analysis: Unwrapping

Discountinuties occur if Φ changes by 2π
If Φ is increasing, the slope is positive and vice versa
Final step in the fringe analysis is to unwrap or integrate the phase 
along a line (or path) counting the discontinuities and ± 2π each time 
the phase angle jumps from 2π to 0 or 0 to 2π

50

Fringe Analysis - Unwrapping
� General expression of 

phase techniques

� If solved for phase values it 

will be somewhat 

� where C and D are functions of the recorded intensity 

� Because of the multi-valued arc tan function, solution 

for I is a saw-tooth function 
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Fringe Analysis - Unwrapping
� Discountinuties 

occur if I

changes by 2S

� If I is increasing,  

the slope is +ve  

and vice versa 

� Final step in the fringe analysis is to unwrap or integrate 

the phase along a line (or path) counting the 

discontinuities and ± 2S each time the phase angle jumps 

from 2S to 0 or 0 to 2S



Benefits of Phase-Shifting Analysis
Phase-shifting analysis enables 
full-field analysis in areas. 

The obtained phase map 
provides directional 
information.

Phase-shifting analysis obtains 
phase information from image 
contrast, not intensity changes 
from peak to valley, thus 
enabling much higher accuracy 
and making the analysis 
tolerant to various surface 
finishes.
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information on a very shiny benched blade.21 This surface tolerance feature makes the 
phase-shifting technique an excellent candidate for on-floor or in-line inspection in manu-
facturing because it eliminates the need for additional surface treatment of the parts to be 
measured.

7.2.3 Phase-Shifting Systems

There are various ways to do phase-shifting phase measurements. Phase-shifting systems 
can be classified into three categories: physical phase shifting requiring mechanical move-
ment,5,16,22–24 digital phase shifting through a digital projector without any movement,8,9,12,21 
and simultaneous phase-shifting techniques.

(a) (b)

FIGURE 7.10
Wrapped phase map (a) and unwrapped phase map (b) after bringing down.

(a) (b) (c)

FIGURE 7.11
Shiny part measurement: (a) 2D picture, (b) fringe image, and (c) 3D point cloud.



Phase-Shifting Systems
Physical Phase-Shifting System. 

A translation stage is used to translate a component, e.g. in 
a Michelson interferometer a mirror is translated to introduce 
phase shifting. The relation between phase shift ∅ and 
translation offset 𝛿 (𝜆 is the wavelength of light source):

In a projection moiré the grating is translated and translation 
offset 𝛿 (p is the pitch of physical grating): 
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7.2.3.1 Physical Phase-Shifting System

In physical phase shifting, a translation stage such as a piezoelectric transducer (PZT) or 
other motorized stage is used to translate a component or a subsystem relative to others. 
In one phase-shifting Michelson interferometer,25 the translated component is a mirror in 
the reference beam to introduce phase shifting. Many such interferometers have very high 
resolution with a small FOV. The relationship between the phase shift ∅  and the transla-
tion offset δ is calculated as (λ is the wavelength of the light source)

 
∅ = 4π δ

λ
 (7.6)

In a projection moiré, the grating is usually translated laterally in the grating plane in 
a direction perpendicular to the grating lines.26 The relationship between the phase shift 
∅ and the translation offset δ is calculated as (p is the pitch of the physical grating)
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the sample is translated, the translation direction is perpendicular to the grating and the 
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are translated relative to each other. The translation amount also depends on the system 
configuration and components for the required phase shift.
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LCD, DMD, and LCOS, is used to project software-generated fringe patterns with a certain 
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where
I(u, v) is the gray level at point (u, v) in the projector chip (LCD, DMD, or LCOS)
p is the period of the fringe pattern in pixels
M is the maximum grayscale the project supports
θ is the phase shift

The fringe line is along the v direction.
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To avoid the color balance issue, some researchers also have used polarization splitting to 
generate multiple interferogram channels with, for example, a 90° phase shift and then used 
multiple cameras to capture the images.34 Some other methods include wave front splitting 
with diffraction optics such as a holographic element35 or a glass plate.36 In the first case,35 
the test and reference beams pass through a holographic element that splits the beam into 
four separate beams, with each beam passing through a birefringent mask before entering 
the charge-coupled device (CCD) camera. The four mask segments introduce phase shifts 
between the test and reference beams. A polarizer is placed between the phase masks and 
the CCD sensor, resulting in the interference of the test and reference beams. In this setup, 
four phase-shifted interferograms are captured in a single shot on a single camera.

7.3 Phase-Shifting Algorithms for Phase Wrapping

Although there are different measurement principles and different ways to do phase shift-
ing, phase-shifting systems all use multiple captured fringe images and share basic phase-
shifting algorithms to extract the phase map from these fringe images.

7.3.1 General Phase-Shifting Algorithm

For both interferogram and projected fringes, the captured 2D fringe image can be written 
in the form of Equation 7.11 or 7.12:

 
I i j I i j i j i j k Kk k( , ) ( , ) ( , )cos ( , ) , , , , ,= + +( )⎡⎣ ⎤⎦ = …0 1 1 2 3γ φ θ  (7.11)

or

 I i j I i j I i j i j k Kk k( , ) ( , ) ( , )cos ( , ) , , , , ,= + ′ +( ) = …0 1 2 3φ θ  (7.12)

where
k is the index number of the images used in the phase measurement method
Ik is the intensity at pixel (i, j) in the captured image
I0 is the background illumination
γ is the fringe modulation (representing image contrast)
I′ is the image contrast
θk is the initial phase for the kth image
K is the total number of the fringe images

In general, it is the phase term ϕ(i, j) in the fringe pattern Equation 7.11 or 7.12 that is 
to be calculated in the phase-shifting algorithms. In this section, attention is paid to the 
common discrete phase-shifting algorithms and their features. Readers interested in 
the development of various phase-shifting algorithms can refer to Refs. [17,37]. Also, the 
phase-shifting algorithms discussed in this section focus on the phase-wrapping process. 
Readers should keep in mind that the wrapped phase map includes the modulo 2π 
discontinuity, so phase unwrapping is needed to obtain a continuous phase map.
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One very helpful feature in phase-shifting systems is the calculation of the image modu-
lation γ. γ represents the image contrast and ranges between 0 and 1. The modulation γ can 
help generate a mask to avoid problems in phase unwrapping. In industrial applications, 
the shape of the parts and environmental lighting conditions vary a lot and may make 
some areas saturated or near saturated or too dark to analyze properly. At these areas, the 
signal-to-noise ratio is very low and the calculated phase information may not be correct. 
Therefore, these locations should be excluded in the following phase-unwrapping process. 
These locations can be detected by the modulation γ because it is much smaller in these 
areas. A common practice is to set a threshold for γ. If γ is smaller than the threshold in a 
pixel, the unwrapping process should bypass it.

7.3.2 Common Phase-Shifting Algorithms

7.3.2.1 Three-Step Phase-Shifting Algorithm

In the three-step phase-shifting algorithm,17,38 the phase shift θ = −2π/3, 0, and 2π/3 is used 
for three fringe images, respectively. The intensities of the three phase-shifted images at 
pixel (i, j) are

 
I i j I i j I i j i j1
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φ π
 (7.13)

 I i j I i j I i j i j2( , ) ( , ) ( , )cos ( , )= + ′ ⎡⎣ ⎤⎦φ  (7.14)
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In these equations, there are three unknowns: I, I′, and ϕ. By solving the earlier  equations, 
phase ϕ (i, j) can be obtained as
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The modulation can be calculated as
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The three-step phase-shifting algorithm only needs three fringe images and thus is among 
the fastest discrete phase-shifting algorithms. But this algorithm is vulnerable to errors in 
the system such as phase-shifting error, nonlinearity error, and noise.

7.3.2.2 Double Three-Step Phase-Shifting Algorithm

An improvement to the three-step phase-shifting algorithm is the double three-step phase-
shifting algorithm, which can significantly reduce the error from system nonlinearity. 
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It has been proved that a second-order nonlinearity residual in the system can result in an 
error of Δφ in the phase map:39
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where
ϕ is the phase calculated with a traditional three-step algorithm when the system has 

perfect linearity
ϕ′ is the calculated phase with a traditional three-step algorithm when the system has a 

second-order nonlinearity
m is a constant that depends on the system linearity

Equation 7.19 indicates that the frequency of the error pattern is three times that of the 
fringe pattern. If an initial phase offset is introduced in the phase-shifted fringe patterns, 
the phase of the error wave will vary correspondingly. When two phase maps are obtained 
with a relative initial phase difference of 60°, the phase difference between these two error 
patterns is approximately 180°. Therefore, when the two phase maps are averaged, the 
error will be significantly reduced. This means that we can do phase shifting twice with 
six fringe patterns with initial phases of 0°, 120°, 240° (group one) and 60°, 180°, 300° (group 
two), use the three-step algorithm twice to calculate the two phase maps from each fringe 
group, and then average the phase maps.

The effectiveness of the double three-step algorithm can be verified theoretically. In 
Equation 7.19, because the second-order nonlinearity residual ε is small, m will be large. If 
m ≫ 1, Equation 7.19 can be simplified as
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If we introduce another phase map with an initial phase offset of 60° for the fringe pat-
terns, the phase error becomes
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It is obvious that Δϕ = −Δϕ′. Therefore, if we average the two phase maps, the error will 
disappear.

7.3.2.3 Four-Step Phase-Shifting Algorithm

The four-step phase-shifting algorithm uses four fringe images with shifted phase θ as

 
θ π π π
i i= =0 2

3
2 1 2 3 4, , , , , , ,  (7.22)
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The four images can be written as

 I i j I i j I i j i j1( , ) ( , ) ( , )cos ( , )= + ′ ⎡⎣ ⎤⎦φ  (7.23)
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Using these trigonometric functions, the phase information can be calculated as
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The modulation can be calculated as
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The four-step phase-shifting algorithm has a 90° phase shift between adjunct frames and 
is easier to implement in some situations, making it the most useful algorithm in simulta-
neous phase-shifting systems.

7.3.2.4 Carré Phase-Shifting Algorithm

The Carré phase-shifting algorithm is a four-step phase shifting algorithm for use with an 
unknown phase shift. The four images can be written as

 I i j I i j I i j i j1 3( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.29)
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 I i j I i j I i j i j3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.31)

 I i j I i j I i j i j4 3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.32)

In this four-equation group, there are four unknowns. The phase ϕ can be calculated as

 

φ( , ) tan ( ) ( ) ( )( )
( ) (i j I I I I I I I I
I I I

= − − − + − −
+ − +

−1 2 3
2

1 4
2

2 3 1 4

2 3 1

3 2
II4 )

⎛

⎝
⎜

⎞

⎠
⎟  (7.33)



Carré Phase-Shifting Algorithm. 

Phase-Shifting Algorithms for 
Phase Wrapping

302 Handbook of Optical Dimensional Metrology

© 2008 Taylor & Francis Group, LLC

The four images can be written as

 I i j I i j I i j i j1( , ) ( , ) ( , )cos ( , )= + ′ ⎡⎣ ⎤⎦φ  (7.23)

 
I i j I i j I i j i j2 2( , ) ( , ) ( , )cos ( , )= + ′ +⎡

⎣⎢
⎤
⎦⎥

ϕ π
 (7.24)

 I i j I i j I i j i j3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ π  (7.25)

 
I i j I i j I i j i j4

3
2( , ) ( , ) ( , )cos ( , )= + ′ +⎡

⎣⎢
⎤
⎦⎥

ϕ π
 (7.26)

Using these trigonometric functions, the phase information can be calculated as

 
φ( , ) tani j I I

I I
= −

−
⎛
⎝⎜

⎞
⎠⎟

−1 4 2

1 3
 (7.27)

The modulation can be calculated as

 
γ( , ) [( ) ( ) ] /
i j I I I I

I I I I
= − + −

+ + +
2 4 2

2
1 3

2 1 2

1 2 3 4
 (7.28)

The four-step phase-shifting algorithm has a 90° phase shift between adjunct frames and 
is easier to implement in some situations, making it the most useful algorithm in simulta-
neous phase-shifting systems.

7.3.2.4 Carré Phase-Shifting Algorithm

The Carré phase-shifting algorithm is a four-step phase shifting algorithm for use with an 
unknown phase shift. The four images can be written as

 I i j I i j I i j i j1 3( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.29)

 I i j I i j I i j i j2( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.30)

 I i j I i j I i j i j3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.31)

 I i j I i j I i j i j4 3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.32)

In this four-equation group, there are four unknowns. The phase ϕ can be calculated as

 

φ( , ) tan ( ) ( ) ( )( )
( ) (i j I I I I I I I I
I I I

= − − − + − −
+ − +

−1 2 3
2

1 4
2

2 3 1 4

2 3 1

3 2
II4 )

⎛

⎝
⎜

⎞

⎠
⎟  (7.33)



Selection of  Phase-Shifting Algorithms.

Many different phase-shifting algorithms have been developed in the 
past that can be used to reduce different types of errors. 

For digital phase-shifting systems, phase shift is performed by 
software programming, and there is no phase-shifting error. The main 
error sources become the nonlinearity and noise from the camera 
and projector. Those phase-shifting algorithms that are insensitive to 
the system nonlinearity will provide the best measurement results.

For physical phase shifting, the phase-shifting error is usually one of 
dominant error sources. When using a physical phase-shifting 
method, the algorithms that are insensitive to the phase-shift error 
will work best.

Phase-Shifting Algorithms for 
Phase Wrapping



Phase-Shifting System Modeling and 
Calibration

Phase-shifting algorithms for phase wrapping result in a 
phase map with a 2π ambiguity. To remove the it, a phase-
unwrapping process is needed.

There is not a unique unwrapped phase maps φ(i, j). 

To covert from φ(i, j) to coordinates of the surface points 
requires a unique absolute phase map, system modelling, 
and system calibration.
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Unwrapped Phase Map and 
Absolute Phase Map

Unwrapped phase map is a continuous phase map 
without 2π discontinuity. 

Absolute phase map is the phase map to be 
converted to coordinates.

For a linear or partially linear model, the absolute 
phase map is usually obtained by subtracting a 
reference phase map from the measurement phase 
map. 
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Fringe Analysis - Phase

� Since the tilt is constant to get the fringes, it can 

be removed by least square fitting.



Unwrapped Phase Map and 
Absolute Phase Map

Reference phase maps can be obtained by either performing 
phase shifting on a reference plane (usually flat) or by creating 
a flat phase plane determined by specific points (constituting a 
horizontal and a vertical line) on the measurement phase map. 

The coordinates calculated later will be referred to these 
planes. After subtraction, the measurement phase map is 
brought down.
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7.4.1.1 Unwrapped Phase Map and Absolute Phase Map

Before further discussing the model for phase-coordinated conversion, some clarification 
is needed for the term “absolute phase map.” Absolute phase map was initially used by 
some researchers to stand for a continuous phase map without 2π discontinuity51 such as 
the unwrapped phase map. Nowadays, it represents the phase map that is used to be con-
verted to coordinates.

For a linear or partially linear model, the absolute phase map is usually obtained by 
subtracting a reference phase map from the measurement phase map. The measurement 
phase map is the unwrapped phase map after performing phase shifting on the object 
surface. Reference phase maps can be obtained by either performing phase shifting on a 
reference plane (usually flat) or by creating a flat phase plane determined by specific points 
(constituting a horizontal and a vertical line) on the measurement phase map. The coor-
dinates calculated later will be referred to these planes. After subtraction, the measure-
ment phase map is brought down. In the unwrapping process for both the measurement 
phase map and the reference phase map, the starting point for the unwrapping processing 
should be the same.

For a nonlinear model, an absolute phase map is linked to the coordinates system 
through either a projector or a camera. For physical phase shifting, special components 
with unique features can be used such as the seam of a folded mirror and overlapped 
points or seam or similar features. For digital phase shifting, an additional single-line 
segment or some kind of special pattern can be projected. These lines or patterns have 
known physical position in the projector and make it much easier to build the relationship 
between the phase value and physical location to further obtain the absolute phase map 
directly related to the system geometry.

One such example is the absolute phase map for the master gage shown in Figure 7.7. 
The digital phase-shifting system used to measure the master gage is similar to the con-
figuration shown in Figure 7.4, which consisted of a black-and-white CCD camera, a digital 
light processing (DLP) projector with DMD technology, an image processor board (Matrox 
Genesis), a PC workstation, and windows-based software for system control and data pro-
cessing. To obtain the absolute phase map, a vertical centerline through the center of the 
projector DLP chip was projected to the object surface. The captured centerline image is 
shown in Figure 7.12. The purpose is to correlate every pixel in the phase map to a point on 
the DMD chip of the projector.

FIGURE 7.12
Image of the projected centerline.
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phase map and the reference phase map, the starting point for the unwrapping processing 
should be the same.

For a nonlinear model, an absolute phase map is linked to the coordinates system 
through either a projector or a camera. For physical phase shifting, special components 
with unique features can be used such as the seam of a folded mirror and overlapped 
points or seam or similar features. For digital phase shifting, an additional single-line 
segment or some kind of special pattern can be projected. These lines or patterns have 
known physical position in the projector and make it much easier to build the relationship 
between the phase value and physical location to further obtain the absolute phase map 
directly related to the system geometry.

One such example is the absolute phase map for the master gage shown in Figure 7.7. 
The digital phase-shifting system used to measure the master gage is similar to the con-
figuration shown in Figure 7.4, which consisted of a black-and-white CCD camera, a digital 
light processing (DLP) projector with DMD technology, an image processor board (Matrox 
Genesis), a PC workstation, and windows-based software for system control and data pro-
cessing. To obtain the absolute phase map, a vertical centerline through the center of the 
projector DLP chip was projected to the object surface. The captured centerline image is 
shown in Figure 7.12. The purpose is to correlate every pixel in the phase map to a point on 
the DMD chip of the projector.

FIGURE 7.12
Image of the projected centerline.
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The centerline image was used to identify the pixels in the phase map that correspond 
to the centerline in the projector chip. These pixels should have the same absolute phase 
as that of the centerline of the projection field where the project fringe patterns were pro-
grammed. With the absolute phase at these pixels known, the absolute phase map of the 
entire surface can be obtained by simply translating the relative unwrapped phase map 
Φ(i, j). Assume the absolute phase of the centerline to be Φ0. The absolute phase map Φ′(i, j) 
can be obtained as follows:38
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where
Φk’s are the phases of the pixels that correspond to the centerline of the projection field
N is the total number of such pixels in a specified segment

The number N may be smaller than the total number of vertical pixels of the CCD sensor 
because the centerline may hit openings on the object surface and line centers near the 
openings should be excluded from calculation. Theoretically, the absolute phase at just one 
pixel is enough to obtain the entire absolute phase map of the object. However, by taking 
the average of the absolute phase values at multiple pixels, as is done in Equation 7.43, more 
accurate results can be obtained.

In digital phase shifting, some techniques other than the additional line projection have 
also been investigated such as embedded patterns or features in the fringe patterns.52,53 
Interested readers can find details in these papers.

7.4.1.2 Linear Model for Flat Surface Measurement

As a simple model that many researchers like to use, the linear model is very straightfor-
ward: the lateral dimensions are proportional to the pixel index while the vertical dimen-
sion is proportional to the absolute phase after reference phase subtraction. The calculation 
that converts pixel (i, j) with absolute phase Φ′ to coordinates (x, y, z) can be represented by 
the following formulae:53,54

 x K i Cx x= −( )  (7.44)

 y K j Cy y= −( )  (7.45)

 z kz= ′Φ  (7.46)

where
Kx, Ky, Kz are scalars in the three coordinate directions
(Cx, Cy) are specified coordinate origin in the lateral directions

In practice, Kx and Ky are usually determined by calibration in the FOV and Kz is deter-
mined by step gage standards.

It is obvious that the linear model requires the camera viewing direction to be perpen-
dicular to the object surface. This model is usually used in flat surface measurement only. 



Unwrapped Phase Map and 
Absolute Phase Map

In this subsection, we will extend the least-squares
approach to the general situation in which the carrier
phase component is a nonlinear function of both x and y
variables. For simplicity the theoretical derivation will
not be based on a specific experimental setup, since there
are many types of system geometries that can lead to a
nonlinear carrier. In this study, it is assumed that the

carrier function can be approximated by a series expan-
sion.

Compared with the one-dimensional (1-D) situation,
which is essentially a high-order curved line fitting, the
two-dimensional (2-D) situation is basically a high-order
curved surface fitting. The mathematical expression for a
curved surface of the Nth order is given by

!r!x,y" =

a0,0 + a0,1x + ¯ + a0,N−1xN−1 + a0,NxN

+ a1,0y + a1,1xy + ¯
+ ¯ + ¯ + ¯
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+ aN,0yN
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Fig. 2. (a) Partial-sphere specimen with carrier fringes in the x direction, (b) unwrapped phase map.

438 J. Opt. Soc. Am. A/Vol. 23, No. 2 /February 2006 L. Chen and C. J. Tay second-order !N=2" curve fitting will provide sufficient
accuracy for most applications. It is important to note
that data points used for the estimation of the carrier
function should be in the vicinity of the reference plane.
Hence this would require a certain degree of human in-
tervention to distinguish the reference plane from the test
object. With advanced graphics-based human–computer
interface, a user-friendly program could make the region
selection easily. Furthermore, for objects that have an in-
herent base plane, manual identification of the reference
plane is unnecessary. An example of this case is shown be-
low.

Figure 4(a) shows the partial sphere specimen with car-
rier fringes generated in an arbitrary direction. In this
case, the spatial nonlinearity of the carrier was extended
to the y direction. To tackle this problem, the method for a
combination of the individual line fitting in the x and y
directions was employed. It is seen from the results [Fig.
4(b)] that although the main part of the curve was re-

moved from the reference plane, it still contains a re-
sidual curvature. This is because the combination of the
line fitting in x and y can estimate only the orthogonal
components of the nonlinear carrier, and the subsequent
subtraction of the orthogonal components would leave
some carrier phases unaffected. The best way to solve this
problem is to estimate the carrier by a generalized
surface-fitting approach, as described in Subsection 2.B.
In this study, a second-order series expansion was used,
and the results obtained were similar to those shown in
Fig. 3(b). It is verified that the carrier phase component
was correctly removed. Compared with Takeda and Mu-
toh’s reference phase map-subtraction method,1 which is
also applicable to the current problem, our approach has
two advantages. First, only one measurement is needed.
Second, the nonlinear carrier is obtained by a series ex-
pansion that does not bring in random errors, which are
inevitable in the measurement of an actual reference
plane. Hence the subtraction of the carrier function does

Fig. 4. (a) Partial-sphere specimen with carrier fringes in an arbitrary direction, (b) phase distribution after the removal of a carrier
obtained by independent line fitting in the x and y directions.
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The centerline image was used to identify the pixels in the phase map that correspond 
to the centerline in the projector chip. These pixels should have the same absolute phase 
as that of the centerline of the projection field where the project fringe patterns were pro-
grammed. With the absolute phase at these pixels known, the absolute phase map of the 
entire surface can be obtained by simply translating the relative unwrapped phase map 
Φ(i, j). Assume the absolute phase of the centerline to be Φ0. The absolute phase map Φ′(i, j) 
can be obtained as follows:38
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where
Φk’s are the phases of the pixels that correspond to the centerline of the projection field
N is the total number of such pixels in a specified segment

The number N may be smaller than the total number of vertical pixels of the CCD sensor 
because the centerline may hit openings on the object surface and line centers near the 
openings should be excluded from calculation. Theoretically, the absolute phase at just one 
pixel is enough to obtain the entire absolute phase map of the object. However, by taking 
the average of the absolute phase values at multiple pixels, as is done in Equation 7.43, more 
accurate results can be obtained.

In digital phase shifting, some techniques other than the additional line projection have 
also been investigated such as embedded patterns or features in the fringe patterns.52,53 
Interested readers can find details in these papers.

7.4.1.2 Linear Model for Flat Surface Measurement

As a simple model that many researchers like to use, the linear model is very straightfor-
ward: the lateral dimensions are proportional to the pixel index while the vertical dimen-
sion is proportional to the absolute phase after reference phase subtraction. The calculation 
that converts pixel (i, j) with absolute phase Φ′ to coordinates (x, y, z) can be represented by 
the following formulae:53,54

 x K i Cx x= −( )  (7.44)

 y K j Cy y= −( )  (7.45)

 z kz= ′Φ  (7.46)

where
Kx, Ky, Kz are scalars in the three coordinate directions
(Cx, Cy) are specified coordinate origin in the lateral directions

In practice, Kx and Ky are usually determined by calibration in the FOV and Kz is deter-
mined by step gage standards.

It is obvious that the linear model requires the camera viewing direction to be perpen-
dicular to the object surface. This model is usually used in flat surface measurement only. 
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A good example is the shadow moiré technique used for flatness measurement in printed 
circuit boards (PCB), where the shadow moiré technique has been specified in several 
industrial standards as a warpage measurement tool.55,56

7.4.1.3 Partially Linear Model for Flat Surface Measurement

The partially linear model assumes that some dimensions (usually x and y coordinates) 
are proportional to the pixel index (i, j) on the image while the vertical coordinate is calcu-
lated from the absolute phase value using a nonlinear formula.

To deduce this kind of functions, some assumptions must be made such as assuming 
the camera is at the same height as the grating and/or assuming the optical axis of the 
camera/lens is perpendicular to the object surface. Using this method, the system configu-
ration of a fringe projection system can be simplified as shown in Figure 7.13. Let (Cx, Cy) 
be the intersect of the camera sensing surface and the optical axis of the imaging lens; the 
coordinates (x, y, z) can be calculated as

 x K i Cx x= −( )  (7.47)

 y K j Cy y= −( )  (7.48)

 
z h L
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= = × ′
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Φ
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where Kx, Ky are scalars in the lateral directions determined by calibrating the FOV. In 
Equation 7.49, Φ′ is the absolute phase, that is, phase difference at pixel (i, j) between the flat 
reference plane and the object plane, and f is the average frequency of fringe on reference 
plane. Φ′ can be obtained by either subtracting the object phase map from the phase map 
of the reference plane or by removing the slope in the measurement phase map by bring-
ing down the phase map. Equation 7.49 is not a universal function. Depending on system 
configurations, other similar functions may be derived.57

Under some situations, Equations 7.47 through 7.49 can provide reasonably good results, 
especially for measurements on flat surfaces. But there are so many assumptions in this 
particular analysis that they cannot provide the desirable accuracy for curved surface mea-
surement. For example, in Figure 7.13, there is no way to ensure that the camera and fringe 
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FIGURE 7.13
Simplified system configuration to calculate coordinate z.
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Camera Calibration.

A camera model describes the mapping between points in a 3D 
space and a pixel in the 2D camera sensor chip. The parameters in 
a camera model can be classified into intrinsic parameters, which 
describe the geometry of the camera itself, and extrinsic 
parameters, which determine the camera’s pose in the 3D space. 
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A calibration process is in fact an optimization process that finds a set of parameters to 
minimize the errors in the data collected for calibration. The ultimate goal of a calibra-
tion process is to find the systematic parameters that are used in the previous model for 
coordinate calculation of the object surface. These parameters are sometimes referred to 
as extrinsic parameters. Some calibration methods also have the capability to find intrinsic 
parameters to compensate for the imperfection in alignment, imaging lens, and cameras. 
Various calibration processes have been investigated,38,60–66 among which Tsai calibration60 
using a well-aligned calibration target on a translation stage and Zhang calibration61 using 
a check board placed in the 3D space with different orientations are most widely used and 
have many adaptive forms.

7.4.2.1 Camera Calibration

A camera model describes the mapping between points in a 3D space and a pixel in the 
2D camera sensor chip. The parameters in a camera model can be classified into intrinsic 
parameters, which describe the geometry of the camera itself, and extrinsic parameters, 
which determine the camera’s pose in the 3D space. Camera calibration is a process to find 
these intrinsic and extrinsic parameters. Thanks to high-quality imaging lens in the opti-
cal industry, a simplified pinhole camera model67 can often meet the accurate calibration 
requirement, although more complex camera models have also been investigated.68,69 The 
pinhole model is demonstrated in Figure 7.16. Assuming the focus length of the imaging 
lens is f, a point P (x, y, z) in the 3D space can be projected into the 2D image plane at image 
point Q (u, v) as
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In this section, we briefly introduce Tsai and Zhang calibration methods, both of which are 
based on the pinhole camera model. Interested readers are referred to the referenced papers 
for more details about various camera models and related calibration techniques. Although 
there are many calibration toolkits available on the Internet, it is highly  recommended that 
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FIGURE 7.16
Pinhole camera model.
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Phase-Shifting Error.

Commonly found in physical phase shifting.

A phase-shift error can sometimes be observed as ripples in 
averaged grayscale images.
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is more likely to provide better results than using a low-quality lens with software-
based lens distortion correction; setting the projector gamma to linear is better than 
compensating for a nonlinear gamma curve in a projector. Moreover, coupling among 
different error sources may make the error compensation less efficient and more difficult. 
In addition, care has to be taken in system adjustment such as alignment and focusing/
defocusing. With that said, error correction and compensation are still very useful as a 
last means of obtaining high-quality measurement results although it makes sense only 
after a “best” system is built.

7.5.1 Error Sources and Adjustment in the Phase-Shifting System

There are many error sources in an optical phase-shifting measurement system.74,75 This 
section discusses the major and most common error sources and their behaviors.

7.5.1.1 Phase-Shifting Error

In digital phase-shifting systems, the phase shift is generated in a software program, and 
theoretically, there is no phase-shift error. In physical phase shifting, linear phase-shift 
error from stage miscalibration and nonlinear phase-shift error from poor stage response 
or control are one of the major concerns.22

A phase-shift error can sometimes be observed as ripples in averaged grayscale images. 
For example, in a three-step phase-shifting algorithm, the averaged image of the three 
fringe images should not have any ripple. Adding Equations 7.12 through 7.14, the aver-
aged image Ī can be calculated as

 
I I I I I i j= + + =1 2 3

3 ( , )  (7.83)

which is a uniform background image whose brightness is about half of the maximum 
brightness.

If one image has a phase-shift error, the averaged image will have significant ripples. 
Figure 7.21 shows the averaged image of three simulated fringe images with a phase shift 
of 0°, 120°, and 245°.

One option to reduce the phase-shift error in physical phase-shifting systems is to use 
a very linear phase shifter and carefully calibrate the stage response to determine voltage 
or pulse signal. Another option is to select a phase-shift algorithm that is insensitive 

0° phase shift 120° phase 245° phase Averaged

FIGURE 7.21
Ripples on the averaged image when the third fringe has a 5° phase-shift error.



Nonlinearity Error in the Detector/Projector.

Nonlinearity errors may exist in both the camera and the projector. 
For industrial digital cameras, even though most have very good 
linearity unless the camera gain is set too low or too high, second-
order nonlinearity may still exist.
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to the phase-shift error such as the Carré phase-shifting and five-step phase-shifting 
algorithms.

7.5.1.2 Nonlinearity Error in the Detector/Projector

Nonlinearity errors may exist in both the camera and the projector. For industrial digital 
cameras, even though most have very good linearity unless the camera gain is set too low 
or too high, second-order nonlinearity may still exist. For presentation and home theater 
digital projectors, the default gamma setting is usually nonlinear because it is set for visual 
perception of nonlinear human eyes. Some projectors allow the users to reset gamma to 
be linear, but second-order nonlinearity may still exist. As one of the most severe error 
sources in digital phase-shifting systems, the nonlinearity will have to be compensated, 
which is discussed in more detail in the following sections.

A typical nonlinearity gamma curve is shown in Figure 7.22. This curve was obtained 
by inputting uniform grayscale images at 1 grayscale step up to 8 bits data limit (255 gray-
scale maximum) to a Canon SX50 LCOS projector. For each of the nine available gamma 
settings (from −4 to 4), a 12 bits digital QImaging camera was used to capture images of 
the projected uniform pattern on a white diffusive target for each projected grayscale 
image. The curves show nonlinearity from both the camera and the projector, mainly 
from the projector.

Some phase-shifting algorithms can deal with the nonlinearity error. For example, it has 
been proved that the double three-step phase-shifting algorithm is very efficient in elimi-
nating the second-order nonlinearity error in the imaging/projecting system,39 even if the 
second-order nonlinearity comes from the camera or the projector.
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Nonlinearity curves of a Canon SX50 LCOS projector.
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One gamma correction method using the gamma curve is through a compensation 
function. A polynomial function up to ninth order is usually used to fit the gamma curve 
such as

 I a a I a I a I a I a I a I a I a I a Ii o o o o o o o o o= + + + + + + + + +0 1 2
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Every intensity value calculated in Equation 7.8 or 7.9 needs to be substituted into Equation 
7.84 as Io to calculate the required input Ii so that the output fringe profile via the projector 
is sinusoidal.

For the gamma γ = 4 curve in Figure 7.22, a noncompensated gamma response will proj-
ect a nonsinusoidal fringe pattern, although the input to the projector is sinusoidal, as 
shown in Figure 7.24. After processing the gamma curve compensation, the 10 coefficients 
in Equation 7.84 are listed in Table 7.1.

The compensation process is demonstrated in Figure 7.25 using the compensation coef-
ficients given in Table 7.1.

An alternative way to the compensation function is to use a lookup table (LUT) and 
 interpolation to modify the calculated intensity by ΔI from Equation 7.8 or 7.9 using

 ′ = +I I I I∆ ( )  (7.85)
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FIGURE 7.24
Projected fringe through a nonlinear projector (arrows indicate the data flow path).
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for phase estimation does not need the gamma curve and one-time compensation but it 
usually needs additional fitting or iteration, and thus is time consuming.

7.5.3 Phase Error Compensation

As an intermediate between the captured images and desired coordinates (point cloud), a 
phase map can also be compensated, a method that has some advantages. Compared with 
direct coordinate correction, phase compensation can be faster and easier to implement as 
long as a good correction mechanism can be built that is reliable and not dependent on the 
measurement settings during image capturing.

Over the past several years, such phase compensation techniques have started to 
emerge.77,81–83 It has been demonstrated that the phase error due to the system nonlinearity 
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Nonlinearity compensation process (arrows indicate the data flow path).
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