Optical Metrology

Lecture 6: Moiré and Triangulation



Sinusoidal gratings

Often physical gratings are square-wave function, but
we can describe them by sinusoidal gratings
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where p i1s the grating period and where 0 <a < 3.

These gratings become modulated
th(x,y) =a-+acos2m (f + W(x)) (7.2)
pP

Y (x) 1s the modulation function and is equal to the displacement of the grating lines from
its original position divided by the grating period

(7.3)

where u(x) 1s the displacement.



Sinusoidal gratings

When the two gratings given by Equations (7.1) and (7.2) are laid in contact, the
resulting transmittance ¢ becomes the product of the individual transmittances, viz.
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The first three terms represent the original gratings, the fourth
term the second grating with doubled frequency,

The fifth term depends on the modulation function only. It is
this term which describes the moiré pattern.
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a maximum resulting in a bright fringe whenever

Y(x)=n, for n=0,=+1,42,43,... (7.6)
and minima (dark fringes) whenever
Yy(x)=n+3, for n=0,+1,£2,%3,... (7.7)

Both grating #; and 7, could be phase-modulated by modulation functions ¥r; and
respectively. Then ¢ (x) in Equations (7.6) and (7.7) has to be replaced by

Y (x) = Yi(x) — ¥a(x) (7.8)



Moire

The figure is an illustration of
two interfering plane waves.
Two gratings that lie in contact, MHHHHHHH
with a small angle betweenthe %

As a result, we see a fringe
pattern of much lower frequency
than the individual gratings. .
This is an example of the moiré %
effect and the resulting fringes = <t
are a moiré pattern. ©)




Moire

Transmittance is equal to the

roduct
P ((x, y) = hi
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Interfringe distance

This can be applied for measuring o by measurement of d.




Measurement of In-Plane
Deformation and Strains

When measuring in-plane deformations a grating is attached to the test surface. When the
surface 1s deformed, the grating will follow the deformation and will therefore be given
by Equation (7.2). The deformation u(x) will be given directly from Equation (7.3):

u(x) = py(x) (7.10)

To obtain the moiré pattern, one may apply one of several methods (Post 1982; Sci-
ammarella 1972, 1982):

(1) Place the reference grating with transmittance #; in contact with the model grating
with transmittance #,. The resulting intensity distribution then becomes proportional
to the product ¢ - .



Measurement of In-Plane
Deformation and Strains

To obtain the moiré pattern, one may apply one of several methods (Post 1982; Sci-
ammarella 1972, 1982):

(1) Place the reference grating with transmittance #; in contact with the model grating
with transmittance #,. The resulting intensity distribution then becomes proportional
to the product ¢, - .

We obtain:

I(x) = 1Iy+ I, cos2myr(x) + terms of higher frequencies

A DC term Iy and a term containing the modulation function.

When applying low frequency gratings -> OK.
High frequency -> Low contrast Moire fringes.



Measurement of In-Plane
Deformation and Strains

We can filter optically or digitally to obtain:

maximum whenever ¥ (x) =n, for n=0,1,2,...

minimum whenever ¥ (x) = n + % for n=0,1,2,...
According to Equation (7.10) this corresponds to a displacement equal to

u(x) =np for maxima (7.13a)

ux) =m+ %)p for minima (7.13b)



Measurement of In-Plane
Deformation and Strains

Intensity distribution of Moiré
pattern, displacement and
strain.




Measurement of In-Plane
Deformation and Strains

By orienting the model grating and the reference grating along the y-axis, we can
in the same manner find the modulation function ,(y) and the displacement v(y) in
the y-direction. ¥, (x) and v,(y) can be detected simultaneously by applying crossed
gratings, 1.e. gratings of orthogonal lines in the x- and y-directions. Thus we also are able
to calculate the strains
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Measurement of Out-of-Plane
Deformations. Contouring

An effect where moiré fringes o
are formed between a grating Shadow Moire
and its own shadow.

PO is projected onto P1, then by oI e e
viewing is projectedto P2onthe = °
grating. _ |

Grating

Equivalent to displacement:

Figure 7.3 Shadow moiré

u=u; +u, =h(x,y)(tan6, + tan6,)

h(x,y) 1s the height difference



Measurement of Out-of-Plane
Deformations. Contouring

This cor_responds_ to a Shadow Moiré
modulation function
u  h(x,y)
Y(x)=— = (tan 6y + tan 6,) Oy |—Up=tliao
p p | o
\i , -eratlng
A bright fringe is obtained when ™, — *S_ 1, /¢ © 7
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Y(x)=n,forn=0,1,2,..., np

hx,y) =

tan 01 + tan 6, Figure 7.3 Shadow moiré

(n+3)p
tan 6, + tan 6,

Dark fringe  h(x,y) =



Triangulation

beam 1s incident on a diffusely scattering surface under an angle 6;. The resulting light
spot on the surface is imaged by a lens onto a detector D. The optical axis of the lens
makes an angle 6, to the surface normal. Assume that the object moves a distance s
normal to its surface. From the figure, using simple trigonometric relations, we find that

Detector

sin(6; + 6
s =m 01 +9) = ms(tan 0; cos 6, + sin 6,)
cos 64

where m 1s the transversal magnification of the lens.

Figure 7.13 Triangulation probe



