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Often physical gratings are square-wave function, but 
we can describe them by sinusoidal gratings 

These gratings become modulated

Sinusoidal gratings
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7.1 INTRODUCTION

Figure 3.2 is an illustration of two interfering plane waves. Let us look at the figure for
what it really is, namely two gratings that lie in contact, with a small angle between
the grating lines. As a result, we see a fringe pattern of much lower frequency than the
individual gratings. This is an example of the moiré effect and the resulting fringes are
called moiré fringes or a moiré pattern. Figures 3.4, 3.8 and 3.9 are examples of the same
effect. The mathematical description of moiré patterns resulting from the superposition
of sinusoidal gratings is the same as for interference patterns formed by electromagnetic
waves. The moiré effect is therefore often termed mechanical interference. The main
difference lies in the difference in wavelength which constitutes a factor of about 102 and
greater.

The moiré effect can be observed in our everyday surroundings. Examples are folded
fine-meshed curtains (moiré means watered silk), rails on each side of a bridge or staircase,
nettings, etc.

Moiré as a measurement technique can be traced many years back. Today there is little
left of the moiré effect, but techniques applying gratings and other type of fringes are
widely used. In this chapter we go through the theory for superposition of gratings with
special emphasis on the fringe projection technique. The chapter ends with a look at a
triangulation probe.

7.2 SINUSOIDAL GRATINGS

Often, gratings applied in moiré methods are transparencies with transmittances given by
a square-wave function. Instead of square-wave functions, we describe linear gratings by
sinusoidal transmittances (reflectances) bearing in mind that all types of periodic grat-
ings can be described as a sum of sinusoidal gratings. A sinusoidal grating of constant
frequency is given by

t1(x, y) = a + a cos
(

2π

p
x

)
(7.1)

where p is the grating period and where 0 < a < 1
2 . The principle behind measure-

ment applications of gratings is that they in some way become phase modulated (see
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of sinusoidal gratings is the same as for interference patterns formed by electromagnetic
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left of the moiré effect, but techniques applying gratings and other type of fringes are
widely used. In this chapter we go through the theory for superposition of gratings with
special emphasis on the fringe projection technique. The chapter ends with a look at a
triangulation probe.

7.2 SINUSOIDAL GRATINGS
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Section 4.7). This means that the grating given by Equation (7.1) can be expressed as

t2(x, y) = a + a cos 2π

(
x

p
+ ψ(x)

)
(7.2)

ψ(x) is the modulation function and is equal to the displacement of the grating lines from
its original position divided by the grating period

ψ(x) = u(x)

p
(7.3)

where u(x) is the displacement.
When the two gratings given by Equations (7.1) and (7.2) are laid in contact, the

resulting transmittance t becomes the product of the individual transmittances, viz.

t (x, y) = t1t2

= a2
{

1 + cos
2π

p
x + cos 2π

[
x

p
+ ψ(x)

]

+1
2

cos 2π

[
2x

p
+ ψ(x)

]
+ 1

2
cos 2πψ(x)

}
(7.4)

The first three terms represent the original gratings, the fourth term the second grating
with doubled frequency, while the fifth term depends on the modulation function only. It
is this term which describes the moiré pattern.

Another way of combining gratings is by addition (or subtraction). This is achieved
by e.g. imaging the two gratings by double exposure onto the same negative. By addition
we get

t (x, y) = t1 + t2 = 2a

{
1 + cos πψ(x) cos 2π

[
x

p
+ 1

2
ψ(x)

]}
(7.5)

Here we see that the term cos πψ(x) describing the moiré fringes are amplitude modu-
lating the original grating.

Both Equations (7.4) and (7.5) have a maximum resulting in a bright fringe whenever

ψ(x) = n, for n = 0, ±1, ±2, ±3, . . . (7.6)

and minima (dark fringes) whenever

ψ(x) = n + 1
2 , for n = 0, ±1, ±2,±3, . . . (7.7)

Both grating t1 and t2 could be phase-modulated by modulation functions ψ1 and ψ2
respectively. Then ψ(x) in Equations (7.6) and (7.7) has to be replaced by

ψ(x) = ψ1(x) − ψ2(x) (7.8)

In both multiplication and addition (subtraction), the grating becomes demodulated (see
Section 3.6.4) thereby getting a term depending solely on ψ(x), describing the moiré
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Figure 3.2 Interference between two plane waves

where

φ1 = k
[
x sin

(
θ − α

2

)
+ z cos

(
θ − α

2

)]
(3.17)

φ2 = k
[
x sin

(
θ + α

2

)
+ z cos

(
θ + α

2

)]
(3.18)

The intensity is given by the general expression in Equation (3.3) by inserting

$φ = φ1 − φ2 = k
{
x

[
sin

(
θ − α

2

)
− sin

(
θ + α

2

)]
+ z

[
cos

(
θ − α

2

)
− cos

(
θ + α

2

)]}

= 2k sin
α

2
{−x cos θ + z sin θ} (3.19)

The interference term is therefore of the form

cos
2π

d
(z sin θ − x cos θ) (3.20)

By comparing this expression with the real part of Equation (1.9a), we see that
Equation (3.20) can be regarded as representing a plane wave with its propagation
direction lying in the xz-plane making an angle θ with the x-axis as depicted in Figure 3.3,

The figure is an illustration of 
two interfering plane waves. 
Two gratings that lie in contact, 
with a small angle between the 
grating lines. 
As a result, we see a fringe 
pattern of much lower frequency 
than the individual gratings.
This is an example of the moiré 
effect and the resulting fringes 
are a moiré pattern.
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fringes. By using square wave (or other types) of gratings, the result will be completely
analogous.

Below we shall find the relations between ψ(x) (and u(x)) and the measuring param-
eters for the different applications.

7.3 MOIRÉ BETWEEN TWO ANGULARLY
DISPLACED GRATINGS

The mathematical description of this case is the same as for two plane waves interfering
under an angle α (see Section 3.4). When two gratings of transmittances t1 and t2 are laid
in contact, the resulting transmittance is not equal to the sum t1 + t2 as in Section 3.4,
but the product t1 · t2. The result is, however, essentially the same, i.e. the gratings form
a moiré pattern with interfringe distance (cf. Equation (3.21))

d = p

2 sin
α

2

(7.9)

This can be applied for measuring α by measurement of d .

7.4 MEASUREMENT OF IN-PLANE DEFORMATION
AND STRAINS

When measuring in-plane deformations a grating is attached to the test surface. When the
surface is deformed, the grating will follow the deformation and will therefore be given
by Equation (7.2). The deformation u(x) will be given directly from Equation (7.3):

u(x) = pψ(x) (7.10)

To obtain the moiré pattern, one may apply one of several methods (Post 1982; Sci-
ammarella 1972, 1982):

(1) Place the reference grating with transmittance t1 in contact with the model grating
with transmittance t2. The resulting intensity distribution then becomes proportional
to the product t1 · t2.

(2) Image the reference grating t1 onto the model grating t2. The resulting intensity
then becomes proportional to the sum t1 + t2. This can also be done by forming the
reference grating by means of interference between two plane coherent waves.

(3) Image the model grating t2, and place the reference grating t1 in the image plane. t1
then of course has to be scaled according to the image magnification. The resulting
intensity becomes proportional to t1 · t2.

(4) Image the reference grating given by t1 onto a photographic film and thereafter image
the model grating given by t2 after deformation onto another film. Then the two films
are laid in contact. The result is t1 · t2.

(5) Do the same as under (4) except that t1 and t2 are imaged onto the same negative by
double exposure. The result is t1 + t2.
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(3) Image the model grating t2, and place the reference grating t1 in the image plane. t1
then of course has to be scaled according to the image magnification. The resulting
intensity becomes proportional to t1 · t2.

(4) Image the reference grating given by t1 onto a photographic film and thereafter image
the model grating given by t2 after deformation onto another film. Then the two films
are laid in contact. The result is t1 · t2.

(5) Do the same as under (4) except that t1 and t2 are imaged onto the same negative by
double exposure. The result is t1 + t2.
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fringes. By using square wave (or other types) of gratings, the result will be completely
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d = p

2 sin
α

2

(7.9)
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Other arrangements might also be possible. In applying methods (1), (3) and (4), the result-
ing intensity distribution is proportional to t1 · t2 and therefore given by Equation (7.4)
which can be written

I (x) = I0 + I1 cos 2πψ(x) + terms of higher frequencies (7.11)

By using methods (2) and (5), the intensity distribution becomes equal to t1 + t2 and
therefore given by Equation (7.5), which can be written

I (x) = I0 + I1 cos πψ(x) cos
2πx

p
+ other terms (7.12)

We see that by using methods (1), (3) and (4) we essentially get a DC-term I0, plus a
term containing the modulation function. In methods (2) and (5) this last term ampli-
tude modulates the original reference grating. When applying low-frequency gratings, all
these methods may be sufficient for direct observation of the modulation function, i.e. the
moiré fringes. When using high-frequency gratings, however, direct observation might be
impossible due to the low contrast of the moiré fringes. This essentially means that the
ratio I1/I0 in Equations (7.11) and (7.12) is very small. We then have the possibility of
applying optical filtering (see Section 4.5). For methods (4) and (5), this can be accom-
plished by placing the negative into a standard optical filtering set-up. Optical filtering
techniques can be incorporated directly into the set-up of methods (1) and (2) by using
coherent light illumination and observing the moiré patterns in the first diffracted side
orders. A particularly interesting method (belonging to method (2)) devised by Post (1971)
is shown in Figure 7.1. Here the reference grating is formed by interference between a
plane wave and its mirror image. The angle of incidence and grating period are adjusted
so that the direction of the first diffracted side order coincides with the object surface
normal. Experiments using model gratings of frequencies as high as 600 lines/mm have
been reported by application of this method. To get sufficient amount of light into the
first diffraction order one has to use phase-type gratings as the model grating. For the
description of how to replicate fine diffraction gratings onto the object surface the reader
is referred to the work of Post.

Fromlaser

MO

Mirror

Object

Lens

Figure 7.1

We obtain:

A DC term I0 and a term containing the modulation function.
When applying low frequency gratings -> OK.
High frequency -> Low contrast Moiré fringes.
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By using methods (3), (4) and (5) the grating frequency (i.e. the measuring sensitivity)
is limited by the resolving power of the imaging lens. For curved surfaces, the model
grating will be modulated due to the curvature, which can lead to false information about
the deformation when using methods (1), (2) and (3). This is not the case for methods
(4) and (5) because this modulation is incorporated in the reference grating (the first
exposure). Surface curvature might also be a problem when using methods (3), (4) and
(5) because of the limited depth of focus of the imaging lens. If we neglect the above-
mentioned drawbacks, methods (1), (2) and (3) have the advantage of measuring the
deformation in real time.

By using one of these methods, we will, either directly or by means of optical filter-
ing, obtain an intensity distribution of the same form as given in the two first terms in
Equation (7.11) or (7.12). This distribution has a

maximum whenever ψ(x) = n, for n = 0, 1, 2, . . .

minimum whenever ψ(x) = n + 1
2 , for n = 0, 1, 2, . . .

According to Equation (7.10) this corresponds to a displacement equal to

u(x) = np for maxima (7.13a)

u(x) = (n + 1
2 )p for minima (7.13b)

Figure 7.2(a) shows an example of such an intensity distribution with the corresponding
displacement and strain in Figures 7.2(b) and (c).

By orienting the model grating and the reference grating along the y-axis, we can
in the same manner find the modulation function ψy(y) and the displacement v(y) in
the y-direction. ψx(x) and ψy(y) can be detected simultaneously by applying crossed
gratings, i.e. gratings of orthogonal lines in the x- and y-directions. Thus we also are able
to calculate the strains

εx = p
∂ψx

∂x
(7.14a)

εy = p
∂ψy

∂y
(7.14b)

γxy = p

[
∂ψx

∂y
+ ∂ψy

∂x

]
(7.14c)

7.4.1 Methods for Increasing the Sensitivity

In many cases the sensitivity, i.e. the displacement per moiré fringe, may be too small.
A lot of effort has therefore been put into increasing the sensitivity of the different moiré
techniques (Gåsvik and Fourney 1986). The various amendments made to the solution of
this problem can be grouped into three methods: fringe multiplication, fringe interpolation
and mismatch.

We can filter optically or digitally to obtain:
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Figure 7.2 (a) Example of the intensity distribution of a moiré pattern with the corresponding;
(b) displacement; and (c) strain

Fringe multiplication

In moiré methods one usually employs square-wave or phase gratings as model gratings.
An analysis of such gratings would have resulted in expressions for the intensity distri-
bution equivalent to Equations (7.11) and (7.12), but with an infinite number of terms
containing frequencies which are integral multiples of the basic frequency. When using
such gratings it is therefore possible to filter out one of the higher-order terms by means
of optical filtering. By filtering out the N th order, one obtains N times as many fringes
and therefore an N -fold increase of the sensitivity compared to the standard technique.
This is the concept of fringe multiplication. However, the intensity distribution of the
harmonic terms generally decreases with increasing orders which therefore sets an upper
bound to the multiplication process. Although in some special cases multiplications up to
30 have been reported, practical multiplications can rarely exceed 10.

Fringe interpolation

This method consists of determining fractional fringe orders. It can be done by scan-
ning the fringe pattern with a slit detector or taking microdensitometer readings from

Intensity distribution of Moiré 
pattern, displacement and 
strain.
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By using methods (3), (4) and (5) the grating frequency (i.e. the measuring sensitivity)
is limited by the resolving power of the imaging lens. For curved surfaces, the model
grating will be modulated due to the curvature, which can lead to false information about
the deformation when using methods (1), (2) and (3). This is not the case for methods
(4) and (5) because this modulation is incorporated in the reference grating (the first
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By orienting the model grating and the reference grating along the y-axis, we can
in the same manner find the modulation function ψy(y) and the displacement v(y) in
the y-direction. ψx(x) and ψy(y) can be detected simultaneously by applying crossed
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7.4.1 Methods for Increasing the Sensitivity

In many cases the sensitivity, i.e. the displacement per moiré fringe, may be too small.
A lot of effort has therefore been put into increasing the sensitivity of the different moiré
techniques (Gåsvik and Fourney 1986). The various amendments made to the solution of
this problem can be grouped into three methods: fringe multiplication, fringe interpolation
and mismatch.
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a photograph of the fringes. It can also be done by digitizing the video signal from a
TV picture. These methods are limited by the unavoidable noise in the moiré patterns.
When forming the reference grating by interference between two plane waves, interpo-
lation can be achieved by moving the phase of one of the plane waves. This is easily
obtained by means of e.g. a quarterwave plate and a rotatable polarizer in the beam of
the plane wave.

For more details of such methods, see Chapter 11.

Mismatch

This is a term concerning many techniques. It consists of forming an initial moiré pattern
between the model and reference grating before deformation. Instead of counting fringe
orders due to the deformation, one measures the deviation or curvature of the initial
pattern. The initial pattern can be produced by gratings having different frequencies, by a
small rotation between the model and reference grating or by a small gap between them.
In this way one can increase the sensitivity by at least a factor of 10.

This is equivalent to the spatial carrier method described in Section 11.4.3.

7.5 MEASUREMENT OF OUT-OF-PLANE
DEFORMATIONS. CONTOURING

7.5.1 Shadow Moiré

We shall now describe an effect where moiré fringes are formed between a grating
and its own shadow: so-called shadow moiré. The principle of the method is shown
in Figure 7.3.

The grating lying over the curved surface is illuminated under the angle of incidence
θ1 (measured from the grating normal) and viewed under an angle θ2. From the figure
we see that a point P0 on the grating is projected to a point P1 on the surface which by
viewing is projected to the point P2 on the grating. This is equivalent to a displacement
of the grating relative to its shadow equal to

u = u1 + u2 = h(x, y)(tan θ1 + tan θ2) (7.15)

where h(x, y) is the height difference between the grating and the point P1 on the
surface. In accordance with Equation (7.3), this corresponds to a modulation function

q1 u1 u2 q2

P0

P1

P2h

Grating

Figure 7.3 Shadow moiré

Shadow Moiré
An effect where moiré fringes 
are formed between a grating 
and its own shadow.

P0 is projected onto P1, then by 
viewing is projected to P2 on the 
grating.

Equivalent to displacement:
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between the model and reference grating before deformation. Instead of counting fringe
orders due to the deformation, one measures the deviation or curvature of the initial
pattern. The initial pattern can be produced by gratings having different frequencies, by a
small rotation between the model and reference grating or by a small gap between them.
In this way one can increase the sensitivity by at least a factor of 10.

This is equivalent to the spatial carrier method described in Section 11.4.3.

7.5 MEASUREMENT OF OUT-OF-PLANE
DEFORMATIONS. CONTOURING

7.5.1 Shadow Moiré
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equal to

ψ(x) = u

p
= h(x, y)

p
(tan θ1 + tan θ2) (7.16)

A bright fringe is obtained whenever ψ(x) = n, for n = 0, 1, 2, . . ., which gives

h(x, y) = np

tan θ1 + tan θ2
(7.17a)

and

h(x, y) = (n + 1
2 )p

tan θ1 + tan θ2
(7.17b)

for dark fringes. In this way, a topographic map is formed over the surface.
In the case of plane wave illumination and observation from infinity, θ1 and θ2 will

remain constant across the surface and Equation (7.17) describes a contour map with a
constant, fixed contour interval. With the point source and the viewing point at finite
distances, θ1 and θ2 will vary across the surface resulting in a contour interval which
is dependent on the surface coordinates. This is of course an unsatisfactory condition.
However, if the point source and the viewing point are placed at equal heights zp above
the surface and if the surface height variations are negligible compared to zp, then tan θ1 +
tan θ2 will be constant across the surface resulting in a constant contour interval. This is
a good solution, especially for large surface areas which are impossible to cover with a
plane wave because of the limited aperture of the collimating lens.

If the surface height variations are large compared to the grating period, diffraction
effects will occur, prohibiting a mere shadow of the grating to be cast on the sur-
face. Shadow moiré is therefore best suited for rather coarse measurements on large
surfaces. It is relatively simple to apply and the necessary equipment is quite inexpen-
sive. It is a valuable tool in experimental mechanics and for measuring and controlling
shapes.

Perhaps the most successful application of the shadow moiré method is in the area of
medicine, such as the detection of scoliosis, a spinal disease which can be diagnozed by
means of the asymmetry of the moiré fringes on the back of the body. Takasaki (1973,
1982) has worked extensively with shadow moiré for the measurement of the human
body. He devised a grating made by stretching acrylic monofilament fibre on a frame
using screws or pins as the pitch guide. According to him, the grating period should
be 1.5–2.0 mm, and the diameter should be half the grating period. The grating should
be sprayed black with high-quality dead back paint. Figure 7.4 shows an example of
contouring of a mannequin of real size using shadow moiré.

7.5.2 Projected Fringes

We now describe a method where fringes are projected onto the test surface. Figure 7.5
shows fringes with an inter-fringe distance d projected onto the xy-plane under an angle
θ1 to the z-axis. The fringe period along the x-axis then becomes
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a photograph of the fringes. It can also be done by digitizing the video signal from a
TV picture. These methods are limited by the unavoidable noise in the moiré patterns.
When forming the reference grating by interference between two plane waves, interpo-
lation can be achieved by moving the phase of one of the plane waves. This is easily
obtained by means of e.g. a quarterwave plate and a rotatable polarizer in the beam of
the plane wave.

For more details of such methods, see Chapter 11.

Mismatch

This is a term concerning many techniques. It consists of forming an initial moiré pattern
between the model and reference grating before deformation. Instead of counting fringe
orders due to the deformation, one measures the deviation or curvature of the initial
pattern. The initial pattern can be produced by gratings having different frequencies, by a
small rotation between the model and reference grating or by a small gap between them.
In this way one can increase the sensitivity by at least a factor of 10.

This is equivalent to the spatial carrier method described in Section 11.4.3.
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and its own shadow: so-called shadow moiré. The principle of the method is shown
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we see that a point P0 on the grating is projected to a point P1 on the surface which by
viewing is projected to the point P2 on the grating. This is equivalent to a displacement
of the grating relative to its shadow equal to

u = u1 + u2 = h(x, y)(tan θ1 + tan θ2) (7.15)

where h(x, y) is the height difference between the grating and the point P1 on the
surface. In accordance with Equation (7.3), this corresponds to a modulation function
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the corresponding movement of the imaged spot on the detector is given by (see Eq. 7.21)

s ′ = m
s sin(θ1 + θ2)

cos θ1
= ms(tan θ1 cos θ2 + sin θ2) (7.57)

where m is the transversal magnification of the lens. The detector is position-sensing, i.e.
it gives an output voltage proportional to the distance of the light spot from the centre
of the detector. It is the centroid of the light spot that is sensed and thus the position
measurement is independent of the spot diameter as long as it is inside the detector
area. Therefore sharp focusing is not critical. The position of an unexpanded laser beam
directly incident on such a detector can be determined to an accuracy of less than 1µm.
From Equation (7.57) we see that the movement s ′ can be magnified by the lens, thereby
increasing the sensitivity. However, the size of the light spot will also be magnified, and
this must always lie inside the detector area to avoid measurement errors, thus limiting
the usable magnification.

In many applications, θ1 is set to zero. Then very precise measurements of movements
along the light beam (the z-axis) can be made. Since the light spot is then always on the
z-axis, it is a good idea to tilt the detector such that the spot is always focused on the
detector. To make measurements on small details, the diameter of a laser beam might be
too large. Then clever optics forming a thin beam through the measurement volume have
to be constructed and light sources other than lasers might be a better alternative. Such
probes can be used to measure the profile of screws and other small parts, for example.

PROBLEMS

7.1 Two gratings with amplitude transmittance

t (x, y) = a

[
1 + cos

(
2π

p
x

)]

are laid in contact with an angle α between the grating lines. Calculate t1 · t2.

7.2 A circular zone plate with centre at (x0, y0) has an amplitude transmittance given by

t (x, y) = 1
2 {1 + cos β[(x − x0)

2 + (y − y0)
2]}

where β is a constant. Suppose that two zone plate transmittances are laid in contact
with a displacement d between their centres.

(a) Show that the resulting moiré fringes describes a new zone-plate pattern.

(b) Find the centre and the frequency of this new zone plate pattern.

7.3 We attach a grating of period p to a bar, whereafter the bar undergoes a uniaxial
tension resulting in a strain equal to εx .

(a) Write down the transmittances t1 and t2 of the grating before and after the load.

(b) Find an expression for t1 + t2 describing the moiré pattern.
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techniques. It is called Lichtenberg’s method (Lichtenberg 1955) and can be applied on
shiny, mirror-like surfaces and phase-objects (Liasi and North 1994).

Figure 7.12 shows the principle of the method. The smoothness of the surface S makes
it possible to image the mirror image of the grating G by means of the lens L. As in
previous methods, a grating can be placed in the image plane of L or the mirror image
of G can be photographed before and after the deformation of S. The result is a moiré
pattern defining the derivative of the height profile, i.e. the slope of the deformation.

In an analysis of the resolution of the reflection moiré method it is found that the
maximum resolution that can be obtained with a viewing camera is of the order 7 × 10−3

radians.

7.7 TRIANGULATION

Shadow moiré and projected fringes are techniques based on the triangulation principle.
We close this chapter by considering a simple triangulation probe. In Figure 7.13 a laser
beam is incident on a diffusely scattering surface under an angle θ1. The resulting light
spot on the surface is imaged by a lens onto a detector D. The optical axis of the lens
makes an angle θ2 to the surface normal. Assume that the object moves a distance s
normal to its surface. From the figure, using simple trigonometric relations, we find that
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Figure 7.13 Triangulation probe
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the corresponding movement of the imaged spot on the detector is given by (see Eq. 7.21)

s ′ = m
s sin(θ1 + θ2)

cos θ1
= ms(tan θ1 cos θ2 + sin θ2) (7.57)

where m is the transversal magnification of the lens. The detector is position-sensing, i.e.
it gives an output voltage proportional to the distance of the light spot from the centre
of the detector. It is the centroid of the light spot that is sensed and thus the position
measurement is independent of the spot diameter as long as it is inside the detector
area. Therefore sharp focusing is not critical. The position of an unexpanded laser beam
directly incident on such a detector can be determined to an accuracy of less than 1µm.
From Equation (7.57) we see that the movement s ′ can be magnified by the lens, thereby
increasing the sensitivity. However, the size of the light spot will also be magnified, and
this must always lie inside the detector area to avoid measurement errors, thus limiting
the usable magnification.

In many applications, θ1 is set to zero. Then very precise measurements of movements
along the light beam (the z-axis) can be made. Since the light spot is then always on the
z-axis, it is a good idea to tilt the detector such that the spot is always focused on the
detector. To make measurements on small details, the diameter of a laser beam might be
too large. Then clever optics forming a thin beam through the measurement volume have
to be constructed and light sources other than lasers might be a better alternative. Such
probes can be used to measure the profile of screws and other small parts, for example.

PROBLEMS

7.1 Two gratings with amplitude transmittance

t (x, y) = a

[
1 + cos

(
2π

p
x

)]

are laid in contact with an angle α between the grating lines. Calculate t1 · t2.

7.2 A circular zone plate with centre at (x0, y0) has an amplitude transmittance given by

t (x, y) = 1
2 {1 + cos β[(x − x0)

2 + (y − y0)
2]}

where β is a constant. Suppose that two zone plate transmittances are laid in contact
with a displacement d between their centres.

(a) Show that the resulting moiré fringes describes a new zone-plate pattern.

(b) Find the centre and the frequency of this new zone plate pattern.

7.3 We attach a grating of period p to a bar, whereafter the bar undergoes a uniaxial
tension resulting in a strain equal to εx .

(a) Write down the transmittances t1 and t2 of the grating before and after the load.

(b) Find an expression for t1 + t2 describing the moiré pattern.


