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1.1 INTRODUCTION

Before entering into the different techniques of optical metrology some basic terms and
definitions have to be established. Optical metrology is about light and therefore we must
develop a mathematical description of waves and wave propagation, introducing important
terms like wavelength, phase, phase fronts, rays, etc. The treatment is kept as simple as
possible, without going into complicated electromagnetic theory.

1.2 WAVE MOTION. THE ELECTROMAGNETIC
SPECTRUM

Figure 1.1 shows a snapshot of a harmonic wave that propagates in the z-direction. The
disturbance ψ(z, t) is given as

ψ(z, t) = U cos
[
2π

( z

λ
− νt

)
+ δ

]
(1.1)

The argument of the cosine function is termed the phase and δ the phase constant. Other
parameters involved are

U = the amplitude
λ = the wavelength
ν = the frequency (the number of waves per unit time)
k = 2π/λ the wave number

The relation between the frequency and the wavelength is given by

λν = v (1.2)

where

v = the wave velocity

ψ(z, t) might represent the field in an electromagnetic wave for which we have

v = c = 3 × 108 m/s
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Figure 1.1 Harmonic wave

Table 1.1 The electromagnetic spectrum (From Young (1968))

The ratio of the speed c of an electromagnetic wave in vacuum to the speed v in a medium
is known as the absolute index of refraction n of that medium

n = c

v
(1.3)

The electromagnetic spectrum is given in Table 1.1.
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Although it does not really affect our argument, we shall mainly be concerned with
visible light where

λ = 400–700 nm (1 nm = 10−9 m)
ν = (4.3–7.5) × 1014 Hz

1.3 THE PLANE WAVE. LIGHT RAYS

Electromagnetic waves are not two dimensional as in Figure 1.1, but rather three-dimen-
sional waves. The simplest example of such waves is given in Figure 1.2 where a plane
wave that propagates in the direction of the k-vector is sketched. Points of equal phase
lie on parallel planes that are perpendicular to the propagation direction. Such planes are
called phase planes or phase fronts. In the figure, only some of the infinite number of
phase planes are drawn. Ideally, they should also have infinite extent.

Equation (1.1) describes a plane wave that propagates in the z-direction. (z = constant
gives equal phase for all x, y, i.e. planes that are normal to the z-direction.) In the general
case where a plane wave propagates in the direction of a unit vector n, the expression
describing the field at an arbitrary point with radius vector r = (x, y, z) is given by

ψ(x, y, z, t) = U cos[kn · r − 2πνt + δ] (1.4)

That the scalar product fulfilling the condition n · r = constant describes a plane which
is perpendicular to n is shown in the two-dimensional case in Figure 1.3. That this is
correct also in the three-dimensional case is easily proved.
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Figure 1.2 The plane wave
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Next we give the definition of light rays. They are directed lines that are everywhere
perpendicular to the phase planes. This is illustrated in Figure 1.4 where the cross-section
of a rather complicated wavefront is sketched and where some of the light rays perpen-
dicular to the wavefront are drawn.

1.4 PHASE DIFFERENCE

Let us for a moment turn back to the plane wave described by Equation (1.1). At two
points z1 and z2 along the propagation direction, the phases are φ1 = kz1 − 2πνt + δ and
φ2 = kz2 − 2πνt + δ respectively, and the phase difference

'φ = φ1 − φ2 = k(z1 − z2) (1.5)

Hence, we see that the phase difference between two points along the propagation direction
of a plane wave is equal to the geometrical path-length difference multiplied by the wave
number. This is generally true for any light ray. When the light passes a medium different
from air (vacuum), we have to multiply by the refractive index n of the medium, such that

optical path length = n × (geometrical path length)

phase difference = k × (optical path length)
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1.5 COMPLEX NOTATION. COMPLEX AMPLITUDE

The expression in Equation (1.4) can be written in complex form as

ψ(x, y, z, t) = Re{Uei(φ−2πvt)} (1.6a)

where
φ = kn · r + δ (1.6b)

is the spatial dependent phase. In Appendix A, some simple arithmetic rules for complex
numbers are given.

In the description of wave phenomena, the notation of Equation (1.6) is commonly
adopted and ‘Re’ is omitted because it is silently understood that the field is described
by the real part.

One advantage of such complex representation of the field is that the spatial and
temporal parts factorize:

ψ(x, y, z, t) = Uei(φ−2πνt) = Ueiφe−i2πvt (1.7)

In optical metrology (and in other branches of optics) one is most often interested in
the spatial distribution of the field. Since the temporal-dependent part is known for each
frequency component, we therefore can omit the factor e−i2πvt and only consider the
spatial complex amplitude

u = Ueiφ (1.8)

This expression describes not only a plane wave, but a general three-dimensional wave
where both the amplitude U and the phase φ may be functions of x, y and z.

Figure 1.5(a, b) shows examples of a cylindrical wave and a spherical wave, while in
Figure 1.5(c) a more complicated wavefront resulting from reflection from a rough surface
is sketched. Note that far away from the point source in Figure 1.5(b), the spherical
wave is nearly a plane wave over a small area. A point source at infinity, represents a
plane wave.

1.6 OBLIQUE INCIDENCE OF A PLANE WAVE

In optics, one is often interested in the amplitude and phase distribution of a wave over
fixed planes in space. Let us consider the simple case sketched in Figure 1.6 where a
plane wave falls obliquely on to a plane parallel to the xy-plane a distance z from it. The
wave propagates along the unit vector n which is lying in the xz-plane (defined as the
plane of incidence) and makes an angle θ to the z-axis. The components of the n- and
r-vectors are therefore

n = (sin θ, 0, cos θ )
r = (x, y, z)
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(c)

Figure 1.5 ((a) and (b) from Hecht & Zajac (1974), Figures 2.16 and 2.17. Reprinted with
permission.)

y

z

n
q

x

Figure 1.6
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These expressions put into Equation (1.6) (Re and temporal part omitted) give

u = Ueik(x sin θ+z cos θ) (1.9a)

For z = 0 (the xy-plane) this reduces to

u = Ueikx sin θ (1.9b)

1.7 THE SPHERICAL WAVE

A spherical wave, illustrated in Figure 1.5(b), is a wave emitted by a point source. It
should be easily realized that the complex amplitude representing a spherical wave must
be of the form

u = U

r
eikr (1.10)

where r is the radial distance from the point source. We see that the phase of this wave is
constant for r = constant, i.e. the phase fronts are spheres centred at the point source. The
r in the denominator of Equation (1.10) expresses the fact that the amplitude decreases
as the inverse of the distance from the point source.

Consider Figure 1.7 where a point source is lying in the x0, y0-plane at a point of
coordinates x0, y0. The field amplitude in a plane parallel to the x0y0-plane at a distance
z then will be given by Equation (1.10) with

r =
√

z2 + (x − x0)2 + (y − y0)2 (1.11)

where x, y are the coordinates of the illuminated plane. This expression is, however, rather
cumbersome to work with. One therefore usually makes some approximations, the first
of which is to replace z for r in the denominator of Equation (1.10). This approximation
cannot be put into the exponent since the resulting error is multiplied by the very large

z

x0
x

(x0, y0)

(x, y)
y0 y

z

Figure 1.7
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number k. A convenient means for approximation of the phase is offered by a binomial
expansion of the square root, viz.

r = z

√

1 +
(

x − x0

z

)2

+
(

y − y0

z

)2

≈ z

[

1 + 1
2

(
x − x0

z

)2

+ 1
2

(
y − y0

z

)2
]

(1.12)

where r is approximated by the two first terms of the expansion.
The complex field amplitude in the xy-plane resulting from a point source at x0, y0 in

the x0y0-plane is therefore given by

u(x, y, z) = U

z
eikzei(k/2z)[(x−x0)

2+(y−y0)
2] (1.13)

The approximations leading to this expression are called the Fresnel approximations. We
shall here not discuss the detailed conditions for its validity, but it is clear that (x − x0)
and (y − y0) must be much less than the distance z.

1.8 THE INTENSITY

With regard to the registration of light, we are faced with the fact that media for direct
recording of the field amplitude do not exist. The most common detectors (like the eye,
photodiodes, multiplication tubes, photographic film, etc.) register the irradiance (i.e. effect
per unit area) which is proportional to the field amplitude absolutely squared:

I = |u|2 = U 2 (1.14)

This important quantity will hereafter be called the intensity.
We mention that the correct relation between U 2 and the irradiance is given by

I = εv

2
U 2 (1.15)

where v is the wave velocity and ε is known as the electric permittivity of the medium.
In this book, we will need this relation only when calculating the transmittance at an
interface (see Section 9.5).

1.9 GEOMETRICAL OPTICS

For completeness, we refer to the three laws of geometrical optics:

(1) Rectilinear propagation in a uniform, homogeneous medium.

(2) Reflection. On reflection from a mirror, the angle of reflection is equal to the angle of
incidence (see Figure 1.8). In this context we mention that on reflection (scattering)
from a rough surface (roughness >λ) the light will be scattered in all directions (see
Figure 1.9).
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q q

Figure 1.8 The law of reflection

Figure 1.9 Scattering from a rough surface

(3) Refraction. When light propagates from a medium of refractive index n1 into a
medium of refractive index n2, the propagation direction changes according to

n1 sin θ1 = n2 sin θ2 (1.16)

where θ1 is the angle of incidence and θ2 is the angle of emergence (see Figure 1.10).
From Equation (1.16) we see that when n1 > n2, we can have θ2 = π/2. This occurs
for an angle of incidence called the critical angle given by

sin θ1 = n2

n1
(1.17)

This is called total internal reflection and will be treated in more detail in Section 9.5.
Finally, we also mention that for light reflected at the interface in Figure 1.10,

when n1 < n2, the phase is changed by π .

q1

q2

n1

n2

Figure 1.10 The law of refraction
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1.10 THE SIMPLE CONVEX (POSITIVE) LENS

We shall here not go into the general theory of lenses, but just mention some of the more
important properties of a simple, convex, ideal lens. For more details, see Chapter 2 and
Section 4.6.

Figure 1.11 illustrates the imaging property of the lens. From an object point Po, light
rays are emitted in all directions. That this point is imaged means that all rays from Po
which pass the lens aperture D intersect at an image point Pi.

To find Pi, it is sufficient to trace just two of these rays. Figure 1.12 shows three of
them. The distance b from the lens to the image plane is given by the lens formula

1
a

+ 1
b

= 1
f

(1.18)

and the transversal magnification

m = hi

ho
= b

a
(1.19)

In Figure 1.13(a), the case of a point source lying on the optical axis forming a spherical
diverging wave that is converted to a converging wave and focuses onto a point on the
optical axis is illustrated. In Figure 1.13(b) the point source is lying on-axis at a distance

Po

a b

ff Pi

D

Figure 1.11

ho

hi

Figure 1.12
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(a)

(b)

(c)

h

q

Figure 1.13

from the lens equal to the focal length f . We then get a plane wave that propagates along
the optical axis. In Figure 1.13(c) the point source is displaced along the focal plane a
distance h from the optical axis. We then get a plane wave propagating in a direction that
makes an angle θ to the optical axis where

tan θ = h/f (1.20)

1.11 A PLANE-WAVE SET-UP

Finally, we refer to Figure 1.14 which shows a commonly applied set-up to form a
uniform, expanded plane wave from a laser beam. The laser beam is a plane wave with
a small cross-section, typically 1 mm. To increase the cross-section, the beam is first
directed through lens L1, usually a microscope objective which is a lens of very short
focal length f1. A lens L2 of greater diameter and longer focal length f2 is placed as
shown in the figure. In the focal point of L1 a small opening (a pinhole) of diameter
typically 10 µm is placed. In that way, light which does not fall at the focal point is
blocked. Such stray light is due to dust and impurities crossed by the laser beam on its

L1

f1

L2

f2

Figure 1.14 A plane wave set-up
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way via other optical elements (like mirrors, beamsplitters, etc.) and it causes the beam
not to be a perfect plane wave.

PROBLEMS

1.1 How many ‘yellow’ light waves (λ = 550 nm) will fit into a distance in space equal
to the thickness of a piece of paper (0.1 mm)? How far will the same number of
microwaves (ν = 1010 Hz, i.e 10 GHz, and v = 3 × 108 m/s) extend?

1.2 Using the wave functions

ψ1 = 4 sin 2π(0.2z − 3t)

ψ2 = sin(7z + 3.5t)

2.5

determine in each case (a) the frequency, (b) wavelength, (c) period, (d) amplitude,
(e) phase velocity and (f) direction of motion. Time is in seconds and z in metres.

1.3 Consider the plane electromagnetic wave (in SI units) given by the expressions
Ux = 0, Uy = exp i[2π × 1014(t − x/c) + π/2], and Uz = 0.

What is the frequency, wavelength, direction of propagation, amplitude and phase
constant of the wave?

1.4 A plane, harmonic light wave has an electric field given by

Uz = U0 exp i
[
π1015

(
t − x

0.65c

)]

while travelling in a piece of glass. Find

(a) the frequency of the light,

(b) its wavelength,

(c) the index of refraction of the glass.

1.5 Imagine that we have a non-absorbing glass plate of index n and thickness 'z which
stands between a source and an observer.

(a) If the unobstructed wave (without the plate present) is Uu = U0 exp iω(t − z/c),
(ω = 2πν) show that with the plate in place the observer sees a wave

Up = U0 exp iω
[
t − (n − 1)'z

c
− z

c

]

(b) Show that if either n ≈ 1 or 'z is very small, then

Up = Uu + ω(n − 1)'z

c
Uue−iπ/2

The second term on the right may be interpreted as the field arising from the oscil-
lating molecules in the glass plate.
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1.6 Show that the optical path, defined as the sum of the products of the various indices
times the thicknesses of media traversed by a beam, that is,

∑
i nixi , is equivalent

to the length of the path in vacuum which would take the same time for that beam
to travel.

1.7 Write down an equation describing a sinusoidal plane wave in three dimensions with
wavelength λ, velocity v, propagating in the following directions:

(a) +z-axis

(b) Along the line x = y, z = 0

(c) Perpendicular to the planes x + y + z = const.

1.8 Show that the rays from a point source S that are reflected by a plane mirror appear
to be coming from the image point S′. Locate S′.

1.9 Consider Figure P1.1. Calculate the deviation ' produced by the plane parallel slab
as a function of n1, n2, t , θ .

1.10 The deviation angle δ gives the total deviation of a ray incident onto a prism, see
Figure P1.2. It is given by δ = δ1 + δ2. Minimum deviation occurs when δ1 = δ2.

(a) Show that in this case δm, the value of δ, obeys the equation

n2

n1
= sin 1

2 (α + δm)

sin 1
2α

(b) Find δm for α = 60◦ and n2/n1 = 1.69.

1.11 (a) Starting with Snell’s law prove that the vector refraction equation has the form

n2k2 − n1k1 = (n2 cos θ2 − n1 cos θ1)un

q

n1

n1

n2

t

∆

Figure P1.1
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a

n1 n2 n1

d2d1

d

Figure P1.2

where k1, k2 are unit propagation vectors and un is the surface normal pointing
from the incident to the transmitting medium.

(b) In the same way, derive a vector expression equivalent to the law of reflection.
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Gaussian Optics

2.1 INTRODUCTION

Lenses are an important part of most optical systems. Good results in optical measure-
ments often rely on the best selection of lenses. In this chapter we develop the relations
governing the passage of light rays through imaging elements on the basis of the paraxial
approximation using matrix algebra. We also mention the aberrations occurring when rays
deviate from this ideal Gaussian behaviour. Finally we go through some of the standard
imaging systems.

2.2 REFRACTION AT A SPHERICAL SURFACE

Consider Figure 2.1 where we have a sphere of radius R centred at C and with refractive
index n′. The sphere is surrounded by a medium of refractive index n. A light ray making
an angle α with the z-axis is incident on the sphere at a point A at height x above the
z-axis. The ray is incident on a plane which is normal to the radius R and the angle of
incidence θ is the angle between the ray and the radius from C. The angle of refraction
is θ ′ and the refracted ray is making an angle α′ with the z-axis. By introducing the
auxiliary angle φ we have the following relations:

φ = θ ′ − α′ (2.1a)

φ = θ − α (2.1b)

sin φ = x

R
(2.1c)

n sin θ = n′ sin θ ′ (2.1d)

The last equation follows from Snell’s law of refraction. By assuming the angles to be
small we have sin φ ≈ φ, sin θ ≈ θ , sin θ ′ ≈ θ ′ and by combining Equations (2.1) we get
the relation

α′ = n − n′

n′R
x + n

n′ α = −P

n′ x + n

n′ α (2.2)

Optical Metrology. Kjell J. Gåsvik
Copyright © 2002 John Wiley & Sons, Ltd.
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Figure 2.1 Refraction at a spherical interface

where

P = n′ − n

R
(2.3)

is called the power of the surface.
The spherical surface in Figure 2.1 might be the front surface of a spherical lens. In

tracing rays through optical systems it is important to maintain consistent sign conventions.
It is common to define ray angles as positive counterclockwise from the z-axis and
negative in the opposite direction. It is also common to define R as positive when the
vertex V of the surface is to the left of the centre C and negative when it is to the
right of C.

As can be realized, a ray is completely determined at any plane normal to the z-axis
by specifying x, its height above the z-axis in that plane, and its angle α relative to the
z-axis. A ray therefore can be specified by a column matrix

(
x
α

)

The two components of this matrix will be altered as the ray propagates through an
optical system. At the point A in Figure 2.1 the height is unaltered, and this fact can be
expressed as

x ′ = x (2.4)

The transformation at this point can therefore be expressed in matrix form as

(
x ′

α′

)
= R

(
x
α

)
(2.5)
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where

R =
⎛

⎝
1 0

−P

n′
n

n′

⎞

⎠ (2.6)

is the refraction matrix for the surface.
At this point it is appropriate to point out the approximations involved in reaching this

formula. First, we have assumed the ray to lie in the xz-plane. To be general we should
have considered the ray to lie in an arbitrary plane, taken its components in the xz- and
yz-planes and introduced the component angles α and β relative to the z-axis. We then
would have found that x and α at a given point depend only on x and α at other points,
not on y and β. In other words, the pairs of variables (x, α) and (y, β) are decoupled from
one another and may be treated independently. This is true only within the assumption of
small angles. Because of this independence it is not necessary to perform calculations on
both projections simultaneously. We do the calculations on the projection in the xz-plane
and the answers will also apply for the yz-plane with the substitutions x → y and α → β.
The xz projections behave as though y and β were zero. Such rays, which lie in a single
plane containing the z-axis are called meridional rays.

In this theory we have assumed that an optical axis can be defined and that all light rays
and all normals to refracting or reflecting surfaces make small angles with the axis. Such
light rays are called paraxial rays. This first-order approximation was first formulated by
C. F. Gauss and is therefore often termed Gaussian optics.

After these remarks we proceed by considering the system in Figure 2.2 consisting of
two refracting surfaces with radii of curvature R1 and R2 separated by a distance D12.
The transformation at the first surface can be written as

(
x ′

1

α′
1

)

= R1

(
x1
α1

)
with R1 =

⎛

⎝
1 0

−P1

n′
1

n1

n′
1

⎞

⎠ (2.7)

where

P1 = n′
1 − n1

R1
(2.8)

a1

a′1
a′2

n ′1n1
n2 n ′2

D12
z

A1

A2

x1
x2

Figure 2.2 Ray tracing through a spherical lens
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The translation from A1 to A2 is given by

x2 = x ′
1 + D12α

′
1 (2.9a)

α2 = α′
1 (2.9b)

which can be written in matrix form as

(
x2
α2

)
= T12

(
x ′

1

α′
1

)

with T12 =
(

1 D12
0 1

)
(2.10)

The refraction at A2 is described by

(
x ′

2

α′
2

)

= R2

(
x2
α2

)
with R2 =

⎛

⎝
1 0

−P2

n′
2

n2

n′
2

⎞

⎠ (2.11)

where

P2 = n′
2 − n2

R2
(2.12)

These equations may be combined to give the overall transformation from a point just to
the left of A1 to a point just to the right of A2:

(
x ′

2

α′
2

)

= M12

(
x1
α1

)
with M12 = R2T12R1 (2.13)

This process can be repeated as often as necessary. The linear transformation between the
initial position and angle x, α and the final position and angle x ′, α′ can then be written
in the matrix form (

x ′

α′

)
= M

(
x
α

)
(2.14)

where M is the product of all the refraction and translation matrices written in order,
from right to left, in the same sequence followed by the light ray.

The determinant of M is the product of all the determinants of the refraction and
translation matrices. We see from Equation (2.10) that the determinant of a translation
matrix is always unity and from Equation (2.6) that the determinant of a refraction matrix
is given by the ratio of initial to final refractive indices. Thus the determinant of M is the
product of the determinants of the separate refraction matrices and takes the form

det M =
(

n1

n′
1

) (
n2

n′
2

)
. . . . (2.15)

But n′
1 = n2, n′

2 = n3 and so on, leaving us with

det M = n

n′ (2.16)
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where n is the index of the medium to the left of the first refracting surface, and n′ is the
index of the medium to the right of the last refracting surface.

2.2.1 Examples

(1) Simple lens. The matrix M is the same as M12 in Equation (2.13). By performing the
matrix multiplication using n′

1 = n2, n1 = n, n′
2 = n′ and D12 = d , we get

M =

⎛

⎜⎜⎝

1 − P1d

n2

nd

n2

−P2

n′ + P1P2d

n′n2
− P1

n′
n

n′

(
1 − P2d

n2

)

⎞

⎟⎟⎠ (2.17)

(2) Thin lens. A thin lens is a simple lens with a negligible thickness d . If we let d → 0
(i.e d ≪ R) in Equation (2.17) we obtain

M =
⎛

⎝
1 0

−P

n′
n

n′

⎞

⎠ (2.18)

where the total power is given by (remember the sign convention for R)

P = P1 + P2 = n2 − n

R1
+ n′ − n2

R2
(2.19)

Note that M has the same form for a thin lens as for a single refracting surface. Note
also that the matrix elements M11 = 1 and M12 = 0. This means that we have x ′ = x,
independently of the value of α.

2.3 THE GENERAL IMAGE-FORMING SYSTEM

In a general image-forming system (possibly consisting of several lens elements) an
incoming ray at point B is outgoing from point B′, shown schematically in Figure 2.3.
The transformation matrix from B to B′ is

M =
(

M11 M12
M21 M22

)
(2.20)

where the only requirement so far is

det M = n

n′ (2.21)

We now ask if it is possible to find new reference planes instead of B and B′ for which
the general matrix M will take the form of that for a thin lens. These will turn out to
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n n ′

D D ′

B B′

H H′

SYSTEM

Figure 2.3

be the so-called principal planes and intersect the axis at H and H′ in Figure 2.3. The
transformation matrix from the H-plane to the H′-plane can be written in terms of M by
adding translation T and T′:

MHH′ = T ′MT =
(

1 D′

0 1

) (
M11 M12
M21 M22

) (
1 D
0 1

)

=
(

M11 + D′M21 M11D + M12 + D′(M21D + M22)
M21 M21D + M22

)
(2.22)

The principal planes are defined as planes of unit magnification. Pairs of points in these
planes are images of each other and planes with this property are called conjugate planes.
Because of this requirement, the 1, 1 element of MHH′ must be unity and the 1, 2 element
must be zero, giving

MHH′ =
(

1 0

M21
n

n′

)

(2.23)

We now equate the elements of the matrices in Equation (2.22) and (2.23)

11 : M11 + D′M21 = 1 i.e. D′ = 1 − M11

M21
(2.24a)

22 : M21D + M22 = n

n′ i.e. D = (n/n′) − M22

M21
(2.24b)

These equations are meaningful only if the condition

M21 ̸= 0 (2.25)

is satisfied. This then becomes the requirement that our general Gaussian system be image-
forming. (Identification of matrix element 12 gives the same condition.) To complete the
final equivalence between our general image-forming system and a thin lens, it is only
necessary to make the identification
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−P

n′ = M21 (2.26)

Thus the image-formation condition, Equation (2.25) guarantees that our system has non-
zero power. This means that all image forming systems have the same formal behaviour
in Gaussian optics, as far as ray-tracing is concerned. It should be noted that for an afocal
system like the plane wave set-up in Figure 1.14 where the two focal points coincide,
M21 = 0. This is the same configuration as in a telescope where we only have angular
magnification.

2.4 THE IMAGE-FORMATION PROCESS

We now want to move from the principal planes to other conjugate planes and determine
the object-image relationships that result. This is done by translation transformations over
the distances a and b in Figure 2.4. The overall transformation matrix from A to A′ is
given by

MAA′ =
(

1 b
0 1

) ⎛

⎝
1 0

−P

n′
n

n′

⎞

⎠
(

1 a
0 1

)

=

⎛

⎜⎜⎝
1 − bP

n′ a − abP

n′ + nb

n′

−P

n′ −aP

n′ + n

n′

⎞

⎟⎟⎠ (2.27)

The image-formation condition is that the 1, 2 element of this matrix be zero:

a − abP

n′ + nb

n′ = 0 (2.28)

that is
n

a
+ n′

b
= P (2.29)

A
H H′

A′

a b

Figure 2.4
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When the image is at +∞, the object is in the first focal plane at a distance

a = n

P
≡ f (2.30)

to the left of the first principal plane. When the object is at +∞, the image is in the
second focal plane at a distance

b = n′

P
≡ f ′ (2.31)

to the right of the second principal plane. Thus Equation (2.29) may be written in the
Gaussian form

n

a
+ n′

b
= n

f
= n′

f ′ (2.32)

When the refractive indices in image and object space are the same (n = n′), this equation
takes on the well known form

1
a

+ 1
b

= 1
f

(2.33)

i.e. the lens formula.
When we have image formation, our matrix can be written

MAA′ =
⎛

⎝
mx 0

−P

n′ mα

⎞

⎠ (2.34)

where the lateral magnification is

mx = 1 − bP

n′ = 1 − b

f ′ = − nb

n′a
(2.35)

and the ray angle magnification is

mα = −aP

n′ + n

n′ = −a

b
(2.36)

From the condition det MAA′ = n/n′ we obtain the result

mxmα = n

n′ (2.37)

In addition to the lateral (or transversal) magnification mx , one might introduce a longi-
tudinal (or axial) magnification defined as %b/%a. By differentiating the lens formula,
we get −%a/a2 − %b/b2 = 0, which gives

%b

%a
= −

(
b

a

)2

= −m2
x (2.38)
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Figure 2.5 Principal planes with some key rays

It should be emphasized that the physical location of the principal planes could be inside
one of the components of the image-forming system. Or they could be outside. The point
to be made is that these are mathematical planes, and the rays behave as though they
were deviated as shown in Figure 2.5. There is no a priori reason for the order of the
principal planes. The plane H could be to the right of H′. The plane H will be to the right
of F and H′ to the left of F′ if f and f ′ are positive.

2.5 REFLECTION AT A SPHERICAL SURFACE

Spherical mirrors are used as elements in some optical systems. In this section we therefore
develop transformations at a reflecting spherical surface.

In Figure 2.6 a light ray making an angle α with the z-axis is incident on the sphere
at a point A at height x and is reflected at an angle α′ to the z-axis. The sphere centre is

R

z

x

a

q

q

a′j

C

A

Figure 2.6 Reflection at a spherical surface
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at C and therefore the reflection angle θ , equal to the angle of incidence, is as shown in
the figure. From the geometry we see that

α′ = φ + θ

φ = α + θ

which gives
α′ = 2φ − α (2.39)

In the paraxial approximation we can put

φ = x/R (2.40)

When maintaining the same sign convention as in Section 2.2, R will be negative,
and so also the angle α′ (α′ is positive clockwise from the negative z-axis). Put into
Equation (2.39), this gives

α′ = α + 2
x

R
(2.41)

The transformation at point A therefore can be written as

(
x ′

α′

)
=

(
1 0

2/R 1

) (
x
α

)
(2.42)

Comparing this with the object–image transformation matrix, Equation (2.34), we get for
the focal length of the spherical mirror

f = −R

2
(2.43)

Figure 2.7 shows four rays from an object point that can be used to find the location
of the image point. Note that one of the rays goes through C and the image point. When
approaching the mirror from beyond a distance 2f = R, the image will gradually increase

F

C
z

Figure 2.7 Imaging by a reflecting spherical surface
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until at 2f it appears inverted and life-size. Moving still closer will cause the image to
increase until it fills the entire mirror with an unrecognisable blur. Decreasing the distance
further, the now erect, magnified image will decrease until the object rests on the mirror
where the image is again life-size. The mirror in Figure 2.7 is concave. A mirror with
opposite curvature is called convex. It is easily verified that a convex mirror forms a
virtual image.

2.6 ASPHERIC LENSES

From school mathematics we learn that rays incident on a reflecting paraboloid parallel
to its axis will be focused to a point on the axis. This comes from the mere definition
of a parabola which is the locus of points at equal distance from a line and a point. The
paraboloid and other non-spherical surfaces are called aspheric surfaces. The equation for
the circular cross-section of a sphere is

x2 + (z − R)2 = R2 (2.44)

where the centre C is shifted from the origin by one radius R: see Figure 2.8. From this
we can solve for z:

z = R ±
√

R2 − x2 (2.45)

By choosing the minus sign, we concentrate on the left hemisphere, and by expanding z
in a binomial series, we get

z = x2

2R
+ 1 · x4

222!R3
+ 1 · 3 · x6

23 · 3!R5
+ · · · (2.46)

z
0

F C

x

ff

Sphere

Paraboloid

Figure 2.8
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The equation for a parabola with its vertex at the origin and its focus a distance f to the
right (see Figure 2.8) is

z = x2

4f
(2.47)

By comparing these two formulas, we see that if f = R/2, the first contribution in the
series can be thought of as being parabolic, while the remaining terms (in x4 and higher)
represent the deviation therefrom. Evidently this difference will only be appreciable when
x is relatively large compared to R. In the paraxial region, i.e. in the immediate vicinity of
the optical axis, these two configurations will be essentially indistinguishable. In practice,
however, x will not be so limited and aberrations will appear. Moreover, aspherical
surfaces produce perfect images only for pairs of axial points – they too will suffer from
aberrations.

The best known aspherical element must be the antenna reflector for satellite TV
reception. But the paraboloidal configuration ranges its present-day applications from
flashlight and auto headlight reflectors to giant telescope antennas. There are several
other aspherical mirrors of some interest, namely the ellipsoid and hyperboloid. So why
are not aspheric lenses more commonly used? The first and most immediate answer is
that, as we have seen, in the paraxial region there is no difference between a spherical
and a paraboloidal surface. Secondly, paraboloidal glass surfaces are difficult to fabricate.
We also might quote from Laikin (1991): ‘The author’s best advice concerning aspherics
is that unless you have to, don’t be tempted to use an aspheric surface’. An important
exception is the video disk lens. Such lenses are small with high numerical aperture
operating at a single laser wavelength; they cover a very small field and are diffraction
limited. A recent trend in the manufacture of these lenses is to injection-mould them
in plastic. This has the advantage of light weight and low cost (because of the large
production volume) and an aspheric surface may be used.

2.7 STOPS AND APERTURES

Stops and apertures play an important role in lens systems.
The aperture stop is defined to be the aperture which physically limits the solid angle

of rays passing through the system from an on-axis object point. A simple example is
shown in Figure 2.9(a) where the hole in the screen limits the solid angle of rays from
the object at Po. The rays are cut off at A and B. The images of A and B are A′ and B′.
To an observer looking back through the lens from a position near P′

o it will appear as if
A′ and B′ are cutting off the rays. If we move the screen to the left of F, we have the
situation shown in Figure 2.9(b). The screen is still the aperture stop, but the images A′,
B′ of A and B are now to the right of P′

o. To an observer who moves sufficiently far to
the right it still appears as if the rays are being cut off by A′ and B′.

A ‘space’ may be defined that contains all physical objects to the right of the lens
plus all points conjugate to physical objects that are to the left of the lens. It is called
the image space. In Figures 2.9(a, b) all primed points are in image space. The image of
the aperture stop in image space is called the exit pupil. To an observer in image space it
appears either as if the rays converging to an on-axis image P′

o are limited in solid angle
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Figure 2.9 Illustrations of entrance and exit pupils

by the exit pupil A′B′ as in Figure 2.9(a) or as if the rays diverging from P′
o are limited

in solid angle by A′B′ as in Figure 2.9(b).
By analogy to the image space, a space called the object space may be defined that

contains all physical objects to the left of the lens plus all points conjugate to any physical
object that may be to the right of the lens. In Figure 2.9(a, b) all unprimed objects are
in the object space. The image of the aperture stop in the object space is defined as the
entrance pupil. The aperture stop in Figure 2.9(a, b) is already in the object space, hence
it is itself the entrance pupil.

In a multilens system some physical objects will be neither in the object nor in the
image space but in between the elements. If a given point is imaged by all lens elements
to its right, it will give an image in the image space; if imaged by all elements to its left,
it will give an image in the object space. A systematic method of finding the entrance
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pupil is to image all stops and lens rims to the left through all intervening refracting
elements of the system into the object space and find the solid angle subtended by each
at Po. The one with the smallest solid angle is the entrance pupil, and the physical object
corresponding to it is the aperture stop. Alternatively we may image all stops and lens
rims to the right through all intervening refractive elements into the image space and
determine the solid angle subtended by each image at P′

o. The one with the smallest solid
angle is the exit pupil, and the corresponding real physical object is the aperture stop.

2.8 LENS ABERRATIONS. COMPUTER LENS DESIGN

The ray-tracing equations used in the theory of Gaussian optics are correct to first order
in the inclination angles of the rays and the normals to refracting or reflecting surfaces.
When higher-order approximations are used for the trigonometric functions of the angles,
departures from the predictions of Gaussian optics will be found. No longer will it be
generally true that all the rays leaving a point object will exactly meet to form a point
image or that the magnification in a given transverse plane is constant. Such deviations
from ideal Gaussian behaviour are known as lens aberrations. In addition, the properties
of a lens system may be wavelength- dependent, known as chromatic aberrations.

Monochromatic aberrations may be treated mathematically in lowest order by carrying
out the ray-tracing calculations to third order in the angles. The resulting ‘third-order
theory’ is itself valid only for small angles and for many real systems calculations must be
carried out to still higher order, say fifth or seventh. (For a centred system with rotational
symmetry, only odd powers of the angles will appear in the ray-tracing formulas.)

Most compound lens systems contain enough degrees of freedom in their design to com-
pensate for aberrations predicted by the third-order theory. For real systems the residual
higher-order aberrations would still be present, and there are not enough design parame-
ters to eliminate all of them as well. The performance of a lens system must be judged
according to the intended use. The criteria for a telescope objective and for a camera lens
for close-ups are quite different.

Third-order monochromatic aberrations can be divided into two subgroups. Those
belonging to the first are called spherical aberrations, coma and astigmatism and will
deteriorate the image, making it unclear. The second type cover field curvature and dis-
tortion, which deform the image. Here we will not treat lens aberrations in any detail.
Figure 2.10 illustrates spherical aberration, and in Section 10.4.1 distortion is treated in

Po P′o

Figure 2.10 Spherical aberration. The focus of the paraxial rays is at P′
o. The marginal rays focus

at a point closer to the lens
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some detail. Because of the complexity of the higher-order aberrations they are usually
treated numerically. Now lens design computer programs are available commercially.
Such programs trace a lot of different rays through the system and the points where
they intersect the image plane is called a spot diagram. By changing the design param-
eters, the change in the spot diagram can be observed. Some computer programs do
such analyses automatically. The computer is given a quality factor (or merit function)
of some sort, which means how much of each aberration is tolerated. Then a roughly
designed system which, in the first approximation, meets the particular requirements is
given as input. The computer will then trace several rays through the system and eval-
uate the image errors. After perhaps twenty or more iterations, it will have changed the
initial configuration so that it now meets the specified limits on aberrations. However,
a quality factor is somewhat like a crater-pocked surface in a multidimensional space.
The computer will carry the design from one hole to the next until it finds one deep
enough to meet the specifications. There is no way to tell if that solution corresponds
to the deepest hole without sending the computer out again and again meandering along
totally different routes.

2.9 IMAGING AND THE LENS FORMULA

Before studying specific lens systems, let us have a closer look at the imaging process
and the lens formula. We have found that a general imaging system is characterized by
the focal length f and the positions of the two principal planes H and H′ which determine
the four cardinal points F, F′, H and H′: see Figure 2.11. Imaging takes place between
conjugate planes in object and image space, and the object and image planes are related
by the lens formula

1
a

+ 1
b

= 1
f

(2.48)

where a and b are measured from the principal planes. Note that both a and b can assume
values between −∞ and ∞. If the object plane lies to the right of the vertex of the first
refracting surface, we have no real object point, but rays that converge to a virtual object
point behind the first refracting surface: see Figure 2.12(c). In the same way we have
a virtual image plane if the image lies to the left of the last vertex of the lens system:
Figure 2.12(b). The rays diverge as if coming from this virtual image point, but they do
not intersect there. Only if rays really intersect at the image point do we have a real
image point and that happens only if the image plane lies to the right of the last vertex

f f ′ = f

z

F N N′

H H′

F′

Figure 2.11 Principal points
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(a) (b)

(c)

O OB
B

B O B O

Figure 2.12 Real and virtual object (O) and image (I) points: (a) real object, real image; (b) real
object, virtual image; (c) virtual object, real image; and (d) virtual object, virtual image

of the system. The focal length can also assume values in the range [−∞,∞]. When
f > 0, we have a positive (or collecting) lens, and when f < 0 we have a negative
lens: see Figure 2.12(b). For a negative lens, F is to the right of H, while F′ is to the
left of H′.

In addition to the above-mentioned cardinal points, we also have the so-called nodal
points N and N′ on the axis: see Figure 2.11. A ray incident on N in the object space
leaves N′ in the image space in the same direction. Rays through nodal points therefore
are parallel, which means that the angular magnification between N and N′ is unity. With
the same refractive index in front and behind the lens (n = n′), we get mxmα = 1, which
means that the nodal points must lie in the principal planes. With unequal indices, the
nodal points move away from the principal planes.

2.10 STANDARD OPTICAL SYSTEMS

It should be remembered that the systems described below are visual instruments of which
the eye of the observer is an integral part.

2.10.1 Afocal Systems. The Telescope

An afocal system has zero power P . This can be realized by two lenses separated by a
distance t equal to the sum of the individual focal lengths, t = f1 + f2: see Figure 2.13.
The system matrix becomes

M =
[

1 0
−1/f2 1

] [
1 (f1 + f2)

0 1

] [
1 0

−1/f1 1

]

=
[

−f2/f1 (f1 + f2)

0 −f1/f2

]

(2.49)



STANDARD OPTICAL SYSTEMS 31

f1 f2

L1

L2

Figure 2.13 The telescope

We see that the M21-element is zero, which means P = 0. Computing the transformation
from a plane a distance d in front of the first lens to a plane a distance d ′ behind the
second lens gives

Mdd ′ =
[

1 d ′

0 1

] [
−f2/f1 (f1 + f2)

0 −f1/f2

] [
1 d

0 1

]

=
[

−f2/f1 [(f1 + f2) − f2d/f1 − f1d
′/f2]

0 −f1/f2

]

(2.50)

Assuming d and d ′ to be the object and image planes, the (1,2)-element must be zero,
and we get

Mdd ′ =
[

−f2/f1 0
0 −f1/f2

]

=
[

mx 0
0 mα

]
(2.51)

Contrary to other lens systems, the lateral magnification

mx = −f2/f1 (2.52)

is constant and independent of the object and image distances. This implies that an afocal
system does not have principal planes with mutual unit magnification. The object–image
relation is also very different from the usual lens formula:

(f2/f1)d + (f1/f2)d
′ = f1 + f2 (2.53a)
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or
d ′ = (f1 + f2)(f1/f1) − (f2/f1)

2d (2.53b)

A telescope is an afocal system with f1 > |f2| giving |mx | < 1. The reason for this
seeming paradox is that when d → ∞ it is the angular magnification mα = −f1/f2 that
determines how large the image looks. The virtual image is demagnified by a factor
mx = −f2/f1, but this is contrasted by being focused at a distance d ′ ≈ dm2

α and is moved
closer by a factor m2

x = (f2/f1)
2. The angular magnification then becomes mx/m2

x =
1/mx = −(f1/f2) > 1.

Since negative lenses have virtual focal points and the focal points in an afocal system
must coincide, the lens with the longest focal length must always be positive. The lens
with the shortest focal length can be either negative, giving an erect image with mx > 0
(Galileo’s telescope, the theatre telescope), or positive, giving an inverted image. In binoc-
ulars, the image is erected by inverting the image in two total reflecting prisms. It should
be noted that when observing faint stellar objects, large angular magnification is not suf-
ficient if the irradiance is too low. The light-collecting capacity is determined by the front
lens. Therefore, when judging the quality of a stellar telescope, the diameter of the front
lens is a more important parameter than the magnification. However, large-aperture lenses
inevitably give more aberrations. Since large-aperture corrected mirrors are easier to fab-
ricate than lenses, stellar telescopes are often equipped with mirrors as front objectives.
Figure 2.14 shows some of the most common designs.

2.10.2 The Simple Magnifier

The unaided eye focuses on an object when the object distance is larger than about
do = 25 cm. The angular resolution (determined by the rods and cones) is about 0.5′ =
0.5/60 = 1/120 deg = 1/7000 radian. At a distance of 25 cm we therefore cannot distin-
guish object details less than 0.07 mm. To observe smaller objects we can use a magnifier.

In Figure 2.15 the object of height h is placed at a distance a < f , where f is the
focal length of the magnifier. The resulting virtual image is located a distance b in front
of the lens, given by the lens formula 1/a + 1/b = 1/f . Since do is the closest distance
the eye can focus, we put b = −do (b is negative), giving

a = dof

do + f
(2.54)

and the magnification

m = do

a
= do + f

f
= do

f
+ 1 (2.55)

For a magnifier with f = 5 cm, the effective magnification is about 5–6 depending on
how the observer focuses.

A simple uncorrected magnifier has rather poor imaging qualities. Similar but well-
corrected systems are applied as oculars in visual instruments. An ocular is a well-
corrected magnifier for visual observation of intermediate images in optical systems.
Since an intermediate image can be virtual, negative lenses can also be used as oculars.
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Figure 2.14 Some common telescope designs: (a) Newtonian; (b) Schmidt–Cassegrain; and
(c) Maksutov–Cassegrain. P = primary mirror, S = secondary mirror, O = ocular
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Figure 2.15 The simple magnifier
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2.10.3 The Microscope

A microscope is used for observation of very small objects where the magnification of
the viewing angle is so large that the assumptions of paraxial optics are no longer valid.
The magnification can be several hundreds, the focal length lies in the millimetre range
and the objective lens is composed of several elements (compound lens). Microscopes
are specialized and standardized instruments consisting of exchangeable objectives with
various focal lengths fob, but which focus an intermediate image at a fixed distance
b = T = 16 cm (the tubus length). The magnification of the objective is therefore given
by mob ≈ T /fob. For a 40× objective we therefore get fob ≈ 16 cm/40 = 4 mm. The
magnified intermediate image is observed by the ocular, which focuses at infinity, giving
a magnification of the viewing angle equal to do/foc ≈ 25 cm/foc. A 10× ocular therefore
has a focal length foc equal to 2.5 cm. The overall magnification becomes mob · moc ≈
T do/(fobfoc), which in our example gives 40 × 10 = 400.

PROBLEMS

2.1 Verify directly by matrix methods that use of the matrix in Equation (2.34) will yield
values of (x ′, α′) for rays 1, 2, 3, 4 in Figure 2.5 so that they behave as shown.

2.2 Consider the system shown in Figure P2.1 where the focal lengths of the first system
are f1, f

′
1 and those of the second f2, f

′
2. The respective powers are

P1 = n1

f1
= n′

1

f ′
1

P2 = n2

f2
= n′

2

f ′
2

(a) Find the transformation matrix MH1H′
2

between the first principal plane of the first
system and the second principal plane of the second system.
We denote the principal planes of the whole system by H and H′ and the distances
HH1 = D and H′

2H
′ = D′.

(b) Express the transformation matrix MHH′ between H and H′ in terms of the total
power P and n and m′.

n1=n n ′1=n2 n′2=n

F1

f1 H′1H1 H2 H′2

F′2
f ′2f ′1 f2

d

l

F′1 F2

Figure P2.1
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n

Figure P2.2

(c) Find the total power of the system.

(d) Find D and D′.

2.3 A doublet consists of two lenses with principal plane separation d = f ′
1 + f2 + l, see

Figure P2.1. We set n2 = n′
2 = 1.

(a) Find the power P of the doublet in terms of P1, P2 and l.

(b) Find the first and second focal lengths.

2.4 Find the power and the locations of the principal planes for a combination of two thin
lenses each with the same focal length f > 0 separated by a distance d: (a) where
d = f , (b) where d = 3f/4.

2.5 Show that the combination of two lenses having equal and opposite powers a finite,
positive, distance d apart has a net positive power P , and find P as a function of d .

2.6 A thick lens as shown in Figure P2.2, is used in air. The first and second radii of
curvature are R1 > 0 and R2 < 0, the index is n > 1, and the thickness |V1V2| is d .
What will be the aperture stop for this lens for an axial object at a general distance S1
to the left of V1? Is the aperture stop always the same? (No calculation is necessary
to solve this problem.)

2.7 A thin lens L1 with a 5.0 cm diameter aperture and focal length +4.0 cm is placed
4.0 cm to the left of another lens L2 4.0 cm in diameter with a focal length of
+10.0 cm. A 2.0 cm high object is located with its centre on the axis 5 cm in front
of L1. There is a 3.0 cm diameter stop centered halfway between L1 and L2. Find the
position and size of (a) the entrance pupil, (b) the exit pupil, (c) the image. Make a
brief sketch to scale.


