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7.1 Introduction

Phase-shifting surface profile measurement is a very important branch in optical metrol-
ogy. When compared with other surface measurement techniques, it has many unique 
features such as varieties of configurations, high resolution, high accuracy, good repeat-
ability, fast measurement speed, and superior surface finish tolerance. Especially in the 
past several decades, with the help of digital image devices and dedicated computer soft-
ware, phase-shifting images were automatically processed at high speed over a full field 
of view (FOV), further enabling superfast 3D measurement without scanning. This chapter 
covers most of the aspects related to phase-shifting systems, including system configura-
tions, phase-shifting algorithms, modeling and calibration of phase-shifting systems, and 
error analysis and compensation for accuracy improvement.

7.2 Phase-Shifting System and Its Benefits

Depending on how a fringe pattern is generated and how it is shifted, various phase-
shifting configurations are available for use in optical metrology, aiming at different 
applications.

7.2.1 Fringe Patterns

A fringe pattern is a periodic grayscale pattern with alternative dark and bright areas. 
Based on pattern generation principles, the most common fringe pattern can be classified 
into three categories: interference pattern, moiré pattern, and projected pattern.
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7.2.1.1 Interference Fringe Pattern

An interference pattern is well known in optical interferometers. When two coherent light 
beams with common polarization superpose in an area, at each point, the resulting light 
intensity, shown as grayscale in a camera, depends on the optical path difference (OPD) 
between these two light sources reaching this point. The OPD results in phase difference 
at a certain point, destructive or constructive, forming periodic pattern on the object sur-
face. A good example is the famous Young’s experiment in optics.1

In optical metrology, the two slots in Young’s experiment are usually replaced by a split-
ter, either polarized or nonpolarized, to generate two wave fronts: one is a measurement 
wave front that is modulated by the geometric variation of the surface, and the other is a 
reference wave front under good control. When these two wave fronts superpose, the dif-
ference between them is revealed in an interference fringe pattern. A typical Michelson 
interferometer is shown in Figure 7.1a. Adjusting the tilting angle of the reference mirror 
will change the pitch of the fringe pattern. This interferometer has very high resolution, up 
to hundredth of wavelength, but the FOV is usually limited because the light beam diam-
eter after expansion has to be slightly larger than the FOV so as to confirm to the related 
components. For large FOV measurements, the system will be too large and too costly.

To measure a large area with a small instrument footprint, a technique called Accordion 
Fringe Interferometry (AFI) was developed at MIT’s Lincoln Laboratory in 1990s,2 as 
shown in Figure 7.1b. AFI uses two-point lasers to illuminate the target divergently and a 
camera to record the interference fringe pattern that is modulated by the surface geometry 
of the sample under measurement. It also provides excellent accuracy performance with a 
large FOV but small footprint. Because the fringe pattern results from laser interference, 
the depth of focus for the fringe projection unit is infinite.

7.2.1.2 Moiré Pattern

A shadow moiré pattern looks like an interference pattern, but its geometric interference 
principle is very different.3–5 Figure 7.2a shows a representative shadow moiré fringe 
image. It is generated by covering the measurement area with a physical grating while 
illuminating and viewing the area from an opposite direction, as shown in Figure 7.2b. 
When light passes through the grating at a tilted angle, a shadow of the grating will be 
generated on the sample surface. When this shadow is observed at a tilted angle from 
the opposite direction to the light source, a moiré pattern can be seen that represents the 
topology of the surface with the peak/valley rings representing the same height relative 
to the physical grating.
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FIGURE 7.1
Interferometers: (a) Michelson interferometer and (b) AFI.
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7.2.1.3 Fringe Projection with a Physical Grating

When a transmission grating with a sinusoidal transmission profile such as holographic 
gratings is placed between a light source and a projection lens, the projected fringe pat-
tern will also have a sinusoidal intensity profile, as shown in Figure 7.3a.6 If a straight-line 
grating with a nonsinusoidal profile such as a ruled grating is used, the projection lens is 
usually defocused slightly so that a pseudo-sinusoidal pattern can be obtained. Figure 7.3b 
shows a projected fringe on an edge break.

Another technique called projection moiré requires a second physical grating to be 
placed before the camera lens.7 The second grating can have a different pitch than that of 
the first grating used for fringe projection. In this configuration, a traditional moiré pat-
tern will be captured in the imaging system. This technique is out of focus of this chapter 
but has been covered in Chapter 8.

7.2.1.4 Digital Fringe Projection

In digital fringe projection,8–10 the fringe pattern can be generated with theoretically any 
intensity profile using computer software and projected to the object surface through an 
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FIGURE 7.3
Projection moiré: (a) setup and (b) pattern.
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FIGURE 7.2
Shadow moiré: (a) moiré pattern and (b) setup.
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off-the-shelf digital projector such as liquid crystal device (LCD), digital mirror device 
(DMD), and liquid crystal on silicon (LCOS) projectors. This provides a low-cost and flex-
ible solution for fringe projection techniques. Figure 7.4 shows the typical set up and two 
projected fringe patterns.

7.2.1.5 Other Special Fringe Patterns

All fringe patterns discussed so far have sinusoidal or pseudo-sinusoidal intensity pro-
files. Sometimes, other special fringe patterns are also used for a specific purpose such as 
speed and simplicity considerations. These patterns include the trapezoidal pattern,11–13 
sawtooth,14 and slope profile. Because this chapter focuses on traditional phase-shifting 
techniques related to sinusoidal patterns, these special patterns and related algorithms 
are not investigated further. Interested readers can find details in the corresponding 
references.

7.2.2 Fringe Pattern Analysis

7.2.2.1 Contour Analysis

To extract the geometric information in the fringe pattern, an appropriate analysis meth-
odology has to be used. To better understand the challenges, it is necessary to take a look 
at the intensity profile of the captured fringe pattern image. Without losing generality, a 
representative cross section near the middle horizontal line of the fringe pattern depicted 
in Figure 7.2 is taken as an example shown in Figure 7.5.

Before the phase-shifting technique was invented, the only way to investigate the fringe 
pattern image was to count the peak and/or valley and follow the contour curve along the 
peaks and valleys,3 as demonstrated in Figure 7.6. The calibration process was to find the 
factor that converted the peak/valley into the height dimension and was used to estimate 
the height variation over the FOV. The denser these fringes are, the steeper the slope mag-
nitude is of the surface area. The resolution and accuracy of this analysis method was very 
low, and there is no way to identify the direction of the slopes from a single image without 
introducing a known tilt to the part, creating a bias fringe larger than any other expected 
slope. That is, by tilting the part, all slopes are made to be perturbations to that slope. The 
requirement for a bias greatly limits the use of such systems for measuring real parts.
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FIGURE 7.4
Digital fringe projection: (a) setup, (b) straight fringe pattern, and (c) circular fringe pattern.
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7.2.2.2 Phase-Shifting Analysis

In the 1970s, thanks to the invention of digital cameras and computers, digital image 
analysis started to be used in optical metrology, and the phase-measuring methods 
became a reality that greatly improved the resolution, accuracy, speed, and repeatability 
of interferometers and moiré technology.15 Over the years, various phase-measuring 
methods have been developed, with the phase-shifting method being the technique most 
widely used.16,17
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FIGURE 7.5
Intensity profile of the middle horizontal cross section in the moiré fringe.

FIGURE 7.6
Contour showing peak (bright bands) and valley (dark bands).
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An entire phase-shifting analysis process is demonstrated in Figure 7.7 using a three-
step phase-shifting algorithm. In Figure 7.7, the three images in the top row are captured 
three fringe images of a master model with a 120° phase shift. The intensities of the three 
phase-shifted images at point (x, y) can be written as
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where
I′(x, y) is the average intensity
I″(x, y) is the intensity modulation
ϕ(x, y) is the phase to be determined

By solving the earlier equations, phase ϕ(x, y) and image contrast γ(x, y) can be obtained as
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This wrapped phase map includes the modulo 2π discontinuity, as shown in Figure 7.8. 
The continuous phase map Φ(i, j) can be obtained by use of a phase-unwrapping algorithm, 
as shown in Figure 7.9. How to implement a fast and robust phase-unwrapping process 
in computer software programming for a complex irregular 2D geometry with various 
slopes and discontinuity, such as holes, requires one to have both programming skills and 
an understanding of the phase-unwrapping principle. This is a complex issue that will 
require an entire book to discuss.18

Because the values of the unwrapped phase depend on the starting point of the 
unwrapping process, the obtained phase map is a relative phase map and cannot be 
used directly to represent the surface geometry although it contains the geometric infor-
mation. For flat surfaces, the phase map can be either subtracted from a reference phase 
map or brought down to reveal the defects or qualitative geometric features, as shown 
in Figure 7.10. But for a complex geometry shape or quantitative dimension comparison 
with geometric tolerance, the difference among the actual surface geometry and phase 
map is obvious, as shown in the bottom row of Figure 7.7. However, when used with 
the appropriate model and phase-to-coordinate conversion algorithm,19,20 an accurate 3D 
shape can be reconstructed from the wrapped phase map, as shown in the bottom-right 
picture of Figure 7.7.
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7.2.2.3 Benefits of Phase-Shifting Analysis

The phase-shifting analysis enables full-field analysis in areas because it provides geomet-
ric information for all sampled points between intensity peak/valleys. The obtained phase 
map provides directional information such as the positive or negative slopes and convex 
or concave local curvatures, along both lateral and vertical directions.

The phase-shifting analysis obtains phase information from image contrast, not inten-
sity changes from peak to valley, thus enabling much higher accuracy and making the 
analysis tolerant to various surface finishes, including shiny surfaces on some parts. 
Figure 7.11 shows how the phase-shifting technique can be used to obtain dimensional 
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FIGURE 7.8
Profile of a wrapped phase map with 2π discontinuity.
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Profile of an unwrapped phase map without 2π discontinuity.
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information on a very shiny benched blade.21 This surface tolerance feature makes the 
phase-shifting technique an excellent candidate for on-floor or in-line inspection in manu-
facturing because it eliminates the need for additional surface treatment of the parts to be 
measured.

7.2.3 Phase-Shifting Systems

There are various ways to do phase-shifting phase measurements. Phase-shifting systems 
can be classified into three categories: physical phase shifting requiring mechanical move-
ment,5,16,22–24 digital phase shifting through a digital projector without any movement,8,9,12,21 
and simultaneous phase-shifting techniques.

(a) (b)

FIGURE 7.10
Wrapped phase map (a) and unwrapped phase map (b) after bringing down.

(a) (b) (c)

FIGURE 7.11
Shiny part measurement: (a) 2D picture, (b) fringe image, and (c) 3D point cloud.



297Phase-Shifting Systems and Phase-Shifting Analysis

© 2008 Taylor & Francis Group, LLC

7.2.3.1 Physical Phase-Shifting System

In physical phase shifting, a translation stage such as a piezoelectric transducer (PZT) or 
other motorized stage is used to translate a component or a subsystem relative to others. 
In one phase-shifting Michelson interferometer,25 the translated component is a mirror in 
the reference beam to introduce phase shifting. Many such interferometers have very high 
resolution with a small FOV. The relationship between the phase shift ∅  and the transla-
tion offset δ is calculated as (λ is the wavelength of the light source)

 
∅ = 4π δ

λ
 (7.6)

In a projection moiré, the grating is usually translated laterally in the grating plane in 
a direction perpendicular to the grating lines.26 The relationship between the phase shift 
∅ and the translation offset δ is calculated as (p is the pitch of the physical grating)

 
∅ = 2π δ

p
 (7.7)

In a shadow moiré system, either the grating5 or the sample27 can be translated. If the grat-
ing is translated, the translation is in the grating plane and Equation 7.7 is still valid. If 
the sample is translated, the translation direction is perpendicular to the grating and the 
amount of translation depends on the components and system configuration.

In a field shifting system,28,29 the image-capturing unit and the fringe projection unit 
are translated relative to each other. The translation amount also depends on the system 
configuration and components for the required phase shift.

7.2.3.2 Digital Phase-Shifting System

In the digital phase-shifting systems as shown in Figure 7.4, a digital projector, for example 
LCD, DMD, and LCOS, is used to project software-generated fringe patterns with a certain 
intensity profile and to project a sinusoidal fringe onto the object surface. A high-resolution 
camera is used to capture the fringe patterns modulated by the object surface. Using 
phase-shifting algorithms, a relative phase map is obtained after phase wrapping and 
unwrapping. The x, y, z coordinates of the object surface with a corresponding pixel-level 
resolution are calculated from the phase map by use of a conversion algorithm.
For a straight-line sinusoidal fringe pattern, the equation used to generate the fringe image 
in the computer can be written as

 
I u v M u

p
( , ) cos= + +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2 1 2π θ  (7.8)

where
I(u, v) is the gray level at point (u, v) in the projector chip (LCD, DMD, or LCOS)
p is the period of the fringe pattern in pixels
M is the maximum grayscale the project supports
θ is the phase shift

The fringe line is along the v direction.
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For a circular fringe pattern centering at (uc, vc), the equation for fringe generation can 
be written as

 
I u v M r

p
( , ) cos= + +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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where

 
r u uc v vc= −( ) + −( )2 2

 (7.10)

in which r is the calculated radius from circular fringe center (uc, vc) and I(u, v), p, M, and θ 
are the same as in Equation 7.8.

In any digital fringe pattern, the shifted phase θ depends on the phase-shifting algorithm 
to be used. These phase-shifting algorithms are discussed in detail in the next section.

7.2.3.3 Simultaneous Phase-Shifting Techniques

The physical phase-shifting and digital phase-shifting techniques need multiple 
fringe images in sequence with the assumption that the target will stay still during 
image capturing. However, sometimes, the target has to be measured in a vibrating 
environment or when the target is still moving. One such example is the measurement 
of facial expressions. Currently, there are two ways to address this issue: one method 
is to capture the images in a time period as short as possible such as using three red, 
green, and blue (RGB) channels. But this method has limitation. The other method is 
to use a simultaneous phase-shifting technique to capture multiple images or multiple 
sub-images at the same time.

A typical solution is to project an RGB color fringe with a phase shift of 120° between 
adjacent colors and use a color camera to capture the images.8 From the color image, 
three monochromatic images can be extracted and used to calculate the phase map via 
the three-step phase-shifting algorithm. The color fringe method can also be applied 
to projection moiré.30 In one color fringe projection research,31 a projected grating that 
consisted of RGB-colored stripes was made, each with a separate set of lines for one 
color channel. The three line sets were identical in terms of the fringe pitch and the 
fringe width. They overlapped with an offset of one-third the line pitch, resulting in 
a 120° phase shift. A color camera captured the three fringes simultaneously. For these 
color fringe methods, channel balance is critical to obtain low-noise phase maps from 
the color fringe image because the camera and the projector might not have the same 
response for these three color channels. A more detailed discussion is provided in the 
following error analysis section.

A more advanced method is to make use of the projector hardware to make “fake” color 
fringes.32,33 When a color fringe is sent to a DMD chip of a digital projector after removing 
its color wheel, the three channels of the projector will have three grayscale images with 
a 120° phase shift. Because these three images are projected in 10 ms, the black-and-white 
camera has to be synchronized with the projector to take all three phase-shifted images 
in this 10 ms time frame. The 3D shape of the object surface can then be reconstructed by 
phase-shifting algorithms. The 3D measurement speed can reach 100 Hz. This method 
does not need a color camera and thus has no color balance problem.
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To avoid the color balance issue, some researchers also have used polarization splitting to 
generate multiple interferogram channels with, for example, a 90° phase shift and then used 
multiple cameras to capture the images.34 Some other methods include wave front splitting 
with diffraction optics such as a holographic element35 or a glass plate.36 In the first case,35 
the test and reference beams pass through a holographic element that splits the beam into 
four separate beams, with each beam passing through a birefringent mask before entering 
the charge-coupled device (CCD) camera. The four mask segments introduce phase shifts 
between the test and reference beams. A polarizer is placed between the phase masks and 
the CCD sensor, resulting in the interference of the test and reference beams. In this setup, 
four phase-shifted interferograms are captured in a single shot on a single camera.

7.3 Phase-Shifting Algorithms for Phase Wrapping

Although there are different measurement principles and different ways to do phase shift-
ing, phase-shifting systems all use multiple captured fringe images and share basic phase-
shifting algorithms to extract the phase map from these fringe images.

7.3.1 General Phase-Shifting Algorithm

For both interferogram and projected fringes, the captured 2D fringe image can be written 
in the form of Equation 7.11 or 7.12:

 
I i j I i j i j i j k Kk k( , ) ( , ) ( , )cos ( , ) , , , , ,= + +( )⎡⎣ ⎤⎦ = …0 1 1 2 3γ φ θ  (7.11)

or

 I i j I i j I i j i j k Kk k( , ) ( , ) ( , )cos ( , ) , , , , ,= + ′ +( ) = …0 1 2 3φ θ  (7.12)

where
k is the index number of the images used in the phase measurement method
Ik is the intensity at pixel (i, j) in the captured image
I0 is the background illumination
γ is the fringe modulation (representing image contrast)
I′ is the image contrast
θk is the initial phase for the kth image
K is the total number of the fringe images

In general, it is the phase term ϕ(i, j) in the fringe pattern Equation 7.11 or 7.12 that is 
to be calculated in the phase-shifting algorithms. In this section, attention is paid to the 
common discrete phase-shifting algorithms and their features. Readers interested in 
the development of various phase-shifting algorithms can refer to Refs. [17,37]. Also, the 
phase-shifting algorithms discussed in this section focus on the phase-wrapping process. 
Readers should keep in mind that the wrapped phase map includes the modulo 2π 
discontinuity, so phase unwrapping is needed to obtain a continuous phase map.
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One very helpful feature in phase-shifting systems is the calculation of the image modu-
lation γ. γ represents the image contrast and ranges between 0 and 1. The modulation γ can 
help generate a mask to avoid problems in phase unwrapping. In industrial applications, 
the shape of the parts and environmental lighting conditions vary a lot and may make 
some areas saturated or near saturated or too dark to analyze properly. At these areas, the 
signal-to-noise ratio is very low and the calculated phase information may not be correct. 
Therefore, these locations should be excluded in the following phase-unwrapping process. 
These locations can be detected by the modulation γ because it is much smaller in these 
areas. A common practice is to set a threshold for γ. If γ is smaller than the threshold in a 
pixel, the unwrapping process should bypass it.

7.3.2 Common Phase-Shifting Algorithms

7.3.2.1 Three-Step Phase-Shifting Algorithm

In the three-step phase-shifting algorithm,17,38 the phase shift θ = −2π/3, 0, and 2π/3 is used 
for three fringe images, respectively. The intensities of the three phase-shifted images at 
pixel (i, j) are

 
I i j I i j I i j i j1

2
3( , ) ( , ) ( , )cos ( , )= + ′ −⎡

⎣⎢
⎤
⎦⎥

φ π
 (7.13)
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In these equations, there are three unknowns: I, I′, and ϕ. By solving the earlier  equations, 
phase ϕ (i, j) can be obtained as
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The modulation can be calculated as
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The three-step phase-shifting algorithm only needs three fringe images and thus is among 
the fastest discrete phase-shifting algorithms. But this algorithm is vulnerable to errors in 
the system such as phase-shifting error, nonlinearity error, and noise.

7.3.2.2 Double Three-Step Phase-Shifting Algorithm

An improvement to the three-step phase-shifting algorithm is the double three-step phase-
shifting algorithm, which can significantly reduce the error from system nonlinearity. 
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It has been proved that a second-order nonlinearity residual in the system can result in an 
error of Δφ in the phase map:39
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where
ϕ is the phase calculated with a traditional three-step algorithm when the system has 

perfect linearity
ϕ′ is the calculated phase with a traditional three-step algorithm when the system has a 

second-order nonlinearity
m is a constant that depends on the system linearity

Equation 7.19 indicates that the frequency of the error pattern is three times that of the 
fringe pattern. If an initial phase offset is introduced in the phase-shifted fringe patterns, 
the phase of the error wave will vary correspondingly. When two phase maps are obtained 
with a relative initial phase difference of 60°, the phase difference between these two error 
patterns is approximately 180°. Therefore, when the two phase maps are averaged, the 
error will be significantly reduced. This means that we can do phase shifting twice with 
six fringe patterns with initial phases of 0°, 120°, 240° (group one) and 60°, 180°, 300° (group 
two), use the three-step algorithm twice to calculate the two phase maps from each fringe 
group, and then average the phase maps.

The effectiveness of the double three-step algorithm can be verified theoretically. In 
Equation 7.19, because the second-order nonlinearity residual ε is small, m will be large. If 
m ≫ 1, Equation 7.19 can be simplified as
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If we introduce another phase map with an initial phase offset of 60° for the fringe pat-
terns, the phase error becomes
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It is obvious that Δϕ = −Δϕ′. Therefore, if we average the two phase maps, the error will 
disappear.

7.3.2.3 Four-Step Phase-Shifting Algorithm

The four-step phase-shifting algorithm uses four fringe images with shifted phase θ as

 
θ π π π
i i= =0 2

3
2 1 2 3 4, , , , , , ,  (7.22)
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The four images can be written as

 I i j I i j I i j i j1( , ) ( , ) ( , )cos ( , )= + ′ ⎡⎣ ⎤⎦φ  (7.23)
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 I i j I i j I i j i j3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ π  (7.25)
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Using these trigonometric functions, the phase information can be calculated as

 
φ( , ) tani j I I

I I
= −

−
⎛
⎝⎜

⎞
⎠⎟

−1 4 2

1 3
 (7.27)

The modulation can be calculated as
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The four-step phase-shifting algorithm has a 90° phase shift between adjunct frames and 
is easier to implement in some situations, making it the most useful algorithm in simulta-
neous phase-shifting systems.

7.3.2.4 Carré Phase-Shifting Algorithm

The Carré phase-shifting algorithm is a four-step phase shifting algorithm for use with an 
unknown phase shift. The four images can be written as

 I i j I i j I i j i j1 3( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.29)

 I i j I i j I i j i j2( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.30)

 I i j I i j I i j i j3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.31)

 I i j I i j I i j i j4 3( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.32)

In this four-equation group, there are four unknowns. The phase ϕ can be calculated as
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The obvious features of the Carré phase-shifting algorithm are that its constant phase 
step 2θ can be arbitrary and the measured phase is insensitive to all even harmonics.17,40,41 
Especially when the phase-shift system did not have linear response over the entire 2π 
range, the Carré phase-shifting algorithm still provides good results if phase shifting is 
performed within a small phase-shift range in a relatively linear segment.

The Carré phase-shifting algorithm has also proved to be adaptive to variation situa-
tions because of the flexibility in phase shift.41 When there is a second-order phase-shift 
error, the average phase measurement error can be minimized when the phase step is 
65.8°. When there is a systematic intensity error such as a nonlinearity in camera response, 
the best phase step is 103° for the minimum phase measurement error. For a high-noise 
image with a random intensity measurement error, a phase step of 110.6° will minimize 
the averaged phase measurement error.

Although the four-step phase-shifting method can be considered a special case of the 
Carré phase-shifting algorithm, it has features that the Carré phase-shifting algorithm does 
not have such as an easier and faster calculation of both the phase map and modulation.

7.3.2.5 Five-Step Phase-Shifting Algorithm (Hariharan Algorithm)

The five-step phase-shifting algorithm with an unknown but constant phase shift is also 
called the Hariharan algorithm.17,42 The five fringe images are

 I i j I i j I i j i j1 2( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.34)

 I i j I i j I i j i j2( , ) ( , ) ( , )cos ( , )= + ′ −⎡⎣ ⎤⎦φ θ  (7.35)

 I i j I i j I' i, j i, j3( ) ( ) ( )cos ( ), ,= + ⎡⎣ ⎤⎦φ  (7.36)

 I i j I i j I i j i j4( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.37)

 I i j I i j I i j i j4 2( , ) ( , ) ( , )cos ( , )= + ′ +⎡⎣ ⎤⎦φ θ  (7.38)

When the phase shift θ = 90°, the phase ϕ and modulation γ can be calculated as
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This phase-shifting algorithm has good tolerance for phase-shift error because the first-
order error terms cancel, even though the errors from second-order residuals still exist.

For an arbitrary phase shift, the phase ϕ and modulation γ can be calculated as43
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As with the Carré phase-shifting algorithm, the five-step phase-shifting algorithm is 
insensitive to phase-shift errors.44

7.3.2.6 Phase-Shifting Algorithms with More Than Five Steps

Although phase-shifting algorithms using more than five image frames are seldom used, 
they do exist.17,45,46 They require more computing resources and time to process the images, 
and it is sometimes impossible to calculate the modulation, but they are usually more 
resistant to some errors. For example, a seven-sample algorithm based on the Surrel six-
sample algorithm using the averaging technique was demonstrated to be insensitive to 
linear and quadratic nonlinear phase-shift errors with linear compensation even when 
the fringe signal contains a second-harmonic distortion.45 Higher-order phase-shifting 
algorithms (six-sample, eight-sample, and nine-sample algorithms) have also been investi-
gated to show the effectiveness in compensating for a quadratic and spatially nonuniform 
phase-shift error.46,47

7.3.2.7 Spatial Carrier Phase-Shifting Algorithms

The spatial carrier method makes use of only one high-resolution fringe image from which 
multiple sub-images with lower resolution are extracted, so that a multiple-step phase-
shifting algorithm can be used.19,43,48–50 Because the spatial carrier method uses only one 
fringe image, it can be used in dynamic environments such as vibrating or moving object 
measurements while still having the benefits of the phase-shifting techniques. Because the 
sub-images are obtained by selecting every Nth pixel in the original image (N is the num-
ber of steps used in the phase-shifting algorithms), these sub-images have a 1/N lateral 
resolution of the original image.

For surfaces with curvature such as edge breaks or sphere/cylindrical surfaces, the 
fringe pitch and thus the actual phase shifts between adjunct pixels can vary a lot over 
the entire surface. When the spatial carrier technique is used, it is critical to select phase-
shifting algorithms with an unknown phase shift such as the Carré phase-shifting algo-
rithm or the five-step phase-shifting algorithm with an arbitrary phase shift, as discussed 
in previous sections. For these algorithms, the local curvature has a decisive impact on the 
measurement accuracy.

The spatial carrier method is sensitive to random noise and is less tolerant to surface 
finish variation. Unlike traditional phase-shifting algorithms, where at corresponding 
pixel (i, j) the detected intensities Ik of these K fringe images come from the same physical 
location on the surface, in the spatial carrier technique, the intensity Ik (i, j) corresponds 
to different physical locations (adjunct pixels in the original image). Therefore, any varia-
tion in the surface reflection or scattering angle, the surface finish, the illumination angle, 
and random noise may result in an error in the wrapped phase using traditional phase- 
shifting algorithms.

7.3.3 Selection of Phase-Shifting Algorithms

Many different phase-shifting algorithms have been developed in the past that can be 
used to reduce different types of errors. Because each algorithm has its own features and 



305Phase-Shifting Systems and Phase-Shifting Analysis

© 2008 Taylor & Francis Group, LLC

no single algorithm can meet all requirements, selection of the most appropriate phase-
shifting algorithm for a specific phase-shifting measurement system needs careful analy-
sis and trade-off considerations.

System dependence results from the fact that different systems have their own main 
error sources. For digital phase-shifting systems, phase shift is performed by software 
programming, and there is no phase-shifting error. The main error sources become the 
nonlinearity and noise from the camera and projector. Those phase-shifting algorithms 
that are insensitive to the system nonlinearity will provide the best measurement results. 
On the contrary, for physical phase shifting, the phase-shifting error is usually one of 
dominant error sources. When using a physical phase-shifting method, the algorithms 
that are insensitive to the phase-shift error will work best. In general, for incorrectly cali-
brated linear error and some nonlinear errors, algorithms that can work with an unknown 
phase shift such as the Carré phase-shifting algorithm and the five-step phase-shifting 
algorithm work the best. For simultaneous phase-shifting systems, the misalignment of 
multiple cameras or sub-images on the same camera may be the critical problem, and the 
selected algorithm needs to work in this situation.

Other considerations are more application oriented. Factors to consider include the part 
geometric (especially curvature variation and surface finish), measurement speed require-
ment, measurement environment, and accuracy requirements.

7.4 Phase-Shifting System Modeling and Calibration

Phase-shifting algorithms for phase wrapping result in a phase map with a 2π ambigu-
ity. To remove the 2π ambiguity, a phase-unwrapping process is needed. A continuous 
phase map Φ(i, j) can be obtained after phase unwrapping. This phase map contains geo-
metric information about the measured surface that sometimes looks like an unscaled, 
distorted 3D surface contour of the object. However, the phase value of the unwrapped 
phase map depends on the starting point of the unwrapping process. Thus, from a 
unique wrapped phase map ϕ(i, j), there may be many unwrapped phase maps ϕ(i, j) that 
can be obtained. Furthermore, a digitized geometry is usually represented by a point 
cloud with a set of 3D coordinates for each point, not the phase map. Converting from 
the continuous phase map to coordinates of the surface points is a critical process for 
accurate measurement, which requires a unique absolute phase map, system  modeling, 
and  system calibration.

7.4.1 Modeling of Phase-Shifting Measurement System

The phase map from the phase-shifting process contains information about an object 
profile and may be similar to its 3D shape, but the phase map and the profile are not 
the same. For industrial applications, it is the surface profile not the phase map that 
is desired. Once the phase map is obtained from the image(s), the coordinates at the 
sampled points on an object surface must be further calculated. This coordinate calcu-
lation at the sample points has to do with a conversion algorithm from phase map to 
coordinates through modeling.19 Based on system configuration requirement and object 
complexity, current models for phase-coordinated conversion can be classified into three 
categories: linear model,  partially linear model, and nonlinear model.



306 Handbook of Optical Dimensional Metrology

© 2008 Taylor & Francis Group, LLC

7.4.1.1 Unwrapped Phase Map and Absolute Phase Map

Before further discussing the model for phase-coordinated conversion, some clarification 
is needed for the term “absolute phase map.” Absolute phase map was initially used by 
some researchers to stand for a continuous phase map without 2π discontinuity51 such as 
the unwrapped phase map. Nowadays, it represents the phase map that is used to be con-
verted to coordinates.

For a linear or partially linear model, the absolute phase map is usually obtained by 
subtracting a reference phase map from the measurement phase map. The measurement 
phase map is the unwrapped phase map after performing phase shifting on the object 
surface. Reference phase maps can be obtained by either performing phase shifting on a 
reference plane (usually flat) or by creating a flat phase plane determined by specific points 
(constituting a horizontal and a vertical line) on the measurement phase map. The coor-
dinates calculated later will be referred to these planes. After subtraction, the measure-
ment phase map is brought down. In the unwrapping process for both the measurement 
phase map and the reference phase map, the starting point for the unwrapping processing 
should be the same.

For a nonlinear model, an absolute phase map is linked to the coordinates system 
through either a projector or a camera. For physical phase shifting, special components 
with unique features can be used such as the seam of a folded mirror and overlapped 
points or seam or similar features. For digital phase shifting, an additional single-line 
segment or some kind of special pattern can be projected. These lines or patterns have 
known physical position in the projector and make it much easier to build the relationship 
between the phase value and physical location to further obtain the absolute phase map 
directly related to the system geometry.

One such example is the absolute phase map for the master gage shown in Figure 7.7. 
The digital phase-shifting system used to measure the master gage is similar to the con-
figuration shown in Figure 7.4, which consisted of a black-and-white CCD camera, a digital 
light processing (DLP) projector with DMD technology, an image processor board (Matrox 
Genesis), a PC workstation, and windows-based software for system control and data pro-
cessing. To obtain the absolute phase map, a vertical centerline through the center of the 
projector DLP chip was projected to the object surface. The captured centerline image is 
shown in Figure 7.12. The purpose is to correlate every pixel in the phase map to a point on 
the DMD chip of the projector.

FIGURE 7.12
Image of the projected centerline.
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The centerline image was used to identify the pixels in the phase map that correspond 
to the centerline in the projector chip. These pixels should have the same absolute phase 
as that of the centerline of the projection field where the project fringe patterns were pro-
grammed. With the absolute phase at these pixels known, the absolute phase map of the 
entire surface can be obtained by simply translating the relative unwrapped phase map 
Φ(i, j). Assume the absolute phase of the centerline to be Φ0. The absolute phase map Φ′(i, j) 
can be obtained as follows:38
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where
Φk’s are the phases of the pixels that correspond to the centerline of the projection field
N is the total number of such pixels in a specified segment

The number N may be smaller than the total number of vertical pixels of the CCD sensor 
because the centerline may hit openings on the object surface and line centers near the 
openings should be excluded from calculation. Theoretically, the absolute phase at just one 
pixel is enough to obtain the entire absolute phase map of the object. However, by taking 
the average of the absolute phase values at multiple pixels, as is done in Equation 7.43, more 
accurate results can be obtained.

In digital phase shifting, some techniques other than the additional line projection have 
also been investigated such as embedded patterns or features in the fringe patterns.52,53 
Interested readers can find details in these papers.

7.4.1.2 Linear Model for Flat Surface Measurement

As a simple model that many researchers like to use, the linear model is very straightfor-
ward: the lateral dimensions are proportional to the pixel index while the vertical dimen-
sion is proportional to the absolute phase after reference phase subtraction. The calculation 
that converts pixel (i, j) with absolute phase Φ′ to coordinates (x, y, z) can be represented by 
the following formulae:53,54

 x K i Cx x= −( )  (7.44)

 y K j Cy y= −( )  (7.45)

 z kz= ′Φ  (7.46)

where
Kx, Ky, Kz are scalars in the three coordinate directions
(Cx, Cy) are specified coordinate origin in the lateral directions

In practice, Kx and Ky are usually determined by calibration in the FOV and Kz is deter-
mined by step gage standards.

It is obvious that the linear model requires the camera viewing direction to be perpen-
dicular to the object surface. This model is usually used in flat surface measurement only. 
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A good example is the shadow moiré technique used for flatness measurement in printed 
circuit boards (PCB), where the shadow moiré technique has been specified in several 
industrial standards as a warpage measurement tool.55,56

7.4.1.3 Partially Linear Model for Flat Surface Measurement

The partially linear model assumes that some dimensions (usually x and y coordinates) 
are proportional to the pixel index (i, j) on the image while the vertical coordinate is calcu-
lated from the absolute phase value using a nonlinear formula.

To deduce this kind of functions, some assumptions must be made such as assuming 
the camera is at the same height as the grating and/or assuming the optical axis of the 
camera/lens is perpendicular to the object surface. Using this method, the system configu-
ration of a fringe projection system can be simplified as shown in Figure 7.13. Let (Cx, Cy) 
be the intersect of the camera sensing surface and the optical axis of the imaging lens; the 
coordinates (x, y, z) can be calculated as

 x K i Cx x= −( )  (7.47)

 y K j Cy y= −( )  (7.48)
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where Kx, Ky are scalars in the lateral directions determined by calibrating the FOV. In 
Equation 7.49, Φ′ is the absolute phase, that is, phase difference at pixel (i, j) between the flat 
reference plane and the object plane, and f is the average frequency of fringe on reference 
plane. Φ′ can be obtained by either subtracting the object phase map from the phase map 
of the reference plane or by removing the slope in the measurement phase map by bring-
ing down the phase map. Equation 7.49 is not a universal function. Depending on system 
configurations, other similar functions may be derived.57

Under some situations, Equations 7.47 through 7.49 can provide reasonably good results, 
especially for measurements on flat surfaces. But there are so many assumptions in this 
particular analysis that they cannot provide the desirable accuracy for curved surface mea-
surement. For example, in Figure 7.13, there is no way to ensure that the camera and fringe 
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FIGURE 7.13
Simplified system configuration to calculate coordinate z.



309Phase-Shifting Systems and Phase-Shifting Analysis

© 2008 Taylor & Francis Group, LLC

projection unit are exactly at the same height. Furthermore, for complicated surface shapes 
with various curvatures, or in a configuration where there is no good means to ensure the 
object is perpendicular to the axis of the imaging system, due to magnification variation 
from point to point, the x and y coordinates are no longer proportional to the image index 
(i, j). The errors in the measured shape of complex surfaces can be very obvious when the 
measured result is compared with a model or other data measured from a good coordinate 
measurement machine (CMM).

When L ≫ h, Equation 7.49 can be further simplified as

 z kz= ′Φ  (7.50)

where

 
k L

fDz = −
2π  (7.51)

In this case, the partially linear model is simplified to the linear model represented in 
Equations 7.44 through 7.46.

7.4.1.4 Nonlinear Model for Complex Shape

To obtain more accurate results, a more thorough nonlinear model than the linear and par-
tially linear models is needed. To demonstrate the concept of the nonlinear model, the key 
dimensions of the digital fringe projection system of Figure 7.4 are shown in Figure 7.14. 
In this diagram, L is the imaging lens center, R is the projection lens center, and the global 
coordinate system XYZ has its origin at point O.

The 3D coordinates (x, y, z) of any corresponding object point P with an image pixel Q(i, j) 
and absolute phase value Φ′(i, j) can be calculated uniquely in the 3D space. First, all points 
on each vertical light sheet RP of the fringe pattern have the same phase, so the positions 
of the fringe lines on the projector can be calculated from the absolute phase values Φ′. The 
equation of the light sheet RP with phase Φ′(i, j) can be stated as

Y

Z

X

Object surface

O

Q(i, j)

CCD

R(xo, yo, zo)

P(x, y, z)

L(xc, yc, zc) DMD chip

FIGURE 7.14
Diagram for a digital phase-shifting system with a DLP projector.
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 A i j c x B i j c y C i j c z D i j( , , , ...) ( , , , ...) ( , , , ...) ( , , ,′ + ′′ + ′ = ′Φ Φ Φ Φ cc...)  (7.52)

where A, B, C, and D define the function of the light sheet RP with phase value Φ′(i, j), 
image index (i, j), and system parameters c. On the other hand, in the imaging system, the 
object point P should lie at the line that connects image pixel Q(i, j) and the camera lens 
center L(xc, yc, zc). The equation of this line LQ can be written as

 

x x
l

y y
m

z z
n

c c c− = − = −  (7.53)

where (l, m,n) is the direction vector of the line.
Calculating the intersection between the imaging ray LQ and projection light sheet 

plane RP by solving Equations 7.52 and 7.53 will provide coordinates (x, y, z) for any point 
P on the object surface.

This model works for all system configurations and complex surfaces. Unlike linear and 
partially linear models, it provides not only accurate shape but also space location of this 
surface in a global coordinate system determined in a calibration  process, thus enabling 
data merging from multiple measurements58 and accurate 360° shape  reconstruction.59 
Figure 7.15 shows a reconstructed 360° shape of a flowerpot with  complex surface textures 
from three measurements. Note that the steps between adjacent patches near the top edge 
result from magnification changes in the FOV between these  measurements due to the 
tilting of the camera.

7.4.2 Phase-Shifting System Calibration

No matter which phase-to-coordinate conversion model is used, a calibration process has 
to be performed to determine the system parameters that are required by the conversion 
algorithms for the calculation of the object coordinates. This calibration process can be as 
simple as estimating the FOV and measuring a step gage with known step height as for 
a linear model and some partially linear models. However, in order to obtain accurate 
measurement results, a more complex calibration process is either desirable for lens error 
compensation or is desired for the nonlinear model.

FIGURE 7.15
Reconstructed 360° shape of a flowerpot with complex surface textures.
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A calibration process is in fact an optimization process that finds a set of parameters to 
minimize the errors in the data collected for calibration. The ultimate goal of a calibra-
tion process is to find the systematic parameters that are used in the previous model for 
coordinate calculation of the object surface. These parameters are sometimes referred to 
as extrinsic parameters. Some calibration methods also have the capability to find intrinsic 
parameters to compensate for the imperfection in alignment, imaging lens, and cameras. 
Various calibration processes have been investigated,38,60–66 among which Tsai calibration60 
using a well-aligned calibration target on a translation stage and Zhang calibration61 using 
a check board placed in the 3D space with different orientations are most widely used and 
have many adaptive forms.

7.4.2.1 Camera Calibration

A camera model describes the mapping between points in a 3D space and a pixel in the 
2D camera sensor chip. The parameters in a camera model can be classified into intrinsic 
parameters, which describe the geometry of the camera itself, and extrinsic parameters, 
which determine the camera’s pose in the 3D space. Camera calibration is a process to find 
these intrinsic and extrinsic parameters. Thanks to high-quality imaging lens in the opti-
cal industry, a simplified pinhole camera model67 can often meet the accurate calibration 
requirement, although more complex camera models have also been investigated.68,69 The 
pinhole model is demonstrated in Figure 7.16. Assuming the focus length of the imaging 
lens is f, a point P (x, y, z) in the 3D space can be projected into the 2D image plane at image 
point Q (u, v) as

 
u fx

z
=  (7.54)

 
v fy

z
=  (7.55)

In this section, we briefly introduce Tsai and Zhang calibration methods, both of which are 
based on the pinhole camera model. Interested readers are referred to the referenced papers 
for more details about various camera models and related calibration techniques. Although 
there are many calibration toolkits available on the Internet, it is highly  recommended that 
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FIGURE 7.16
Pinhole camera model.
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the related camera models for these toolkits be fully understood because different models 
may use the same terms for different meanings.

The Tsai camera calibration method can deal with coplanar and noncoplanar points. 
It is a two-step calibration method that can calibrate the intrinsic and extrinsic parameters 
separately. In Tsai calibration, there are 11 parameters that are to be optimized:

f: Effective focal length of the camera lens
k: Radial distortion coefficient of the camera lens
(Cx, Cy): Origin of the image coordinate (intersect of the lens axis and the image sensor)
Sx: Scale factor due to imperfections in hardware timing misstep
(Rx, Ry, Rz): Rotation angles between the global and camera coordinates systems
(Tx, Ty, Tz): Translation position between the global and camera coordinates systems

The rotation matrix R is deducted from the (Rx, Ry, Rz) as
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r r r
r r r
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 (7.56)

where

 r R Ry z1 = cos( )cos( )  (7.57)

 r R R R R Rx y z x z2 = −sin( )sin( )cos( ) cos( )sin( )  (7.58)

 r R R R R Rx z x y z3 = +sin( )sin( ) cos( )sin( )cos( )  (7.59)

 r R Ry z4 = cos( )sin( )  (7.60)

 r R R R R Rx y z x z5 = +sin( )sin( )sin( ) cos( )cos( )  (7.61)

 r R R R R Rx y z x z6 = −cos( )sin( )sin( ) sin( )cos( )  (7.62)

 r Ry7 = −sin( )  (7.63)

 r R Rx y8 = sin( )cos( )  (7.64)

 r R Rx y9 = cos( )cos( )  (7.65)

The translation matrix T is defined as
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A point (x, y, z) in the world coordinate system is transformed to the image coordinate sys-
tem to be (xi, yi, zi) through the translation matrix T and rotation matrix R as
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Further transformation to undistorted coordinates (xu, yu) to distorted (xd, yd) in image 
plane coordinates via the pinhole model is
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=  (7.68)
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where k is the lens distortion coefficient and r x yd d= +2 2.
The transformation from distorted coordinates (xd, yd) to the final image index (xf, yf) is

 
x s x

d
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x d

x
x= +  (7.72)

 
y y

d
Cf

d

y
y= +  (7.73)

where (dx, dy) are camera pixel size in the X and Y direction.
In Tsai’s calibration, a calibration setup is required for calibration data preparation. In 

this setup, a flat target with certain patterns is mounted to a translation stage with the 
target plane perpendicular to the translation direction. The target is translated in the cali-
bration volume (usually as close to the measurement volume as possible). At each location, 
the image of the target is taken and saved with the translation reading. The X and Y axes 
origin is specified on the target (usually in the middle), while the translation direction 
defines the Z axis with one translation location set as Z = 0. After processing the target 
images, for each feature on the calibration target, a unique correspondence between the 
real image index (xf, yf) in the image plane and its 3D coordinates (x, y, z) in the calibration 
volume is established. Applying this data set to the Tsai’s calibration algorithm, together 
with known information about the camera and lens, all optimized intrinsic and extrinsic 
parameters can be obtained.
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The Zhang camera calibration describes the relation between point (x, y, z) in the 3D space 
and image point (u, v) in the image plane in another form as
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where
s is an arbitrary scale factor
[R t] is the transformation matrix containing the extrinsic parameter
scale matrix A contains the intrinsic parameters
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Physical meanings of these parameters are
α: Effective focal length in the image u axis
β: Effective focal length in the image v axis
γ: Skewness factor of the u and v axes in the image plane
R: Rotation matrix consisting of three column vectors r1, r2, and r3
t: Translation matrix
(u0, v0): Coordinates of the principal point
(k1, k2): Two coefficients of the radial distortion

The distorted image coordinates (u′, v′) are related to the undistorted image coordinates 
(u, v) as

 
′ = + − × +( )u u u u k r k r( )0 1

2
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4  (7.76)
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where

 r u u v v= − + −( ) ( )0
2

0
2  (7.78)

Zhang calibration first solves five intrinsic parameters and all extrinsic parameters using a 
closed-form solution and then estimates the coefficients of the radial distortion by use of a 
linear least-square algorithm (note: this estimate may be inexact as actual optical geomet-
ric distorting in a lens goes as a cube function).
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In Zhang’s calibration, there is no need for the translation stage. A flat target with certain 
patterns is placed at a minimum of three orientations: the first one at zero position for the 
Z coordinate, and then the others skewed relative to the first one. The motion of the target 
is flexible and need not be known. The X and Y origin is specified on the target. At each 
orientation, an image is taken and processed to obtain the calibration data set. By running 
the calibration codes with the data set and known parameters about the camera and lens, 
the parameters can be obtained.

In either Tsai calibration or Zhang calibration, an appropriate image processing is 
required. The calibration target needs to have features that are easy to identify and with 
known physical dimension. Common patterns include dot patterns, donut patterns, 
checkboard patterns, square grid patterns, and line grids. Either the center or edge corner on 
these patterns can be used as calibration features. Some researchers also use coded marks.70

In phase-shifting measurement systems, the calibrated parameters are used to calculate 
the 3D coordinates from each camera pixel and its phase information. Unlike calibration 
that starts from known 3D coordinates of target features in the 3D space, measurement 
has to start with the pixel index to calculate coordinates in the 3D space. This requires 
full understanding of the calibration model and properly using these parameters in a 
reverse way.

7.4.2.2 Projector Calibration

In general, projector calibration can be regarded as a reverse of the camera calibration 
using the same pinhole model. Although a projector cannot take images like a camera, 
it can project a pattern with known pixel information (u, v) on the projector chip such as 
a known grid or stripe. In Tsai calibration, the projector can be calibrated with the same 
setup as the camera calibration discussed in the previous section because the projected 
pattern on the calibration target can be captured by the camera. After camera calibration, 
the calibrated results can be used to calculate the coordinates (x, y, z) of the projected 
features such as grid points in the 3D space at some known Z locations. In this way, the 
correspondence between projector pixel (u, v) and related 3D coordinates (x, y, z) in the 3D 
space is established. The obtained data set can then be applied to the calibration algorithm 
to obtain the projector calibration parameters. It should be noted that, in this way, the pro-
jector and camera are calibrated in the same global coordinates system. Figure 7.17 shows 
one captured image of the projected grid pattern on a calibration target while Figure 7.18 
shows the point clouds of the data set obtained at 5 Z positions for projector calibration.

Also, individual points can be projected as well to collect the data, instead of the grid. C. 
Sinlapeecheewa used the stereo vision method to obtain the 3D coordinates of the project 
point with a known pixel location in the projector chip.71 Another researcher used CMM 
to place the target at specified 3D coordinates.72

A good use for the projector calibration with the gird data set is the masking on the 
projector.21 A mask is a binary image that describes which pixel is valid. In the digital 
phase-shifting systems, both projected and captured images are programmable. To take 
advantage of this programmability to deal with double bounce light (light that reflects 
from one area on a part to another, causing confusing patterns), we can use masks to con-
trol where to project fringes and where to be measured. A fringe mask can be applied to the 
fringe projection unit so as to only illuminate a specific area. Because phase  shifting–based 
fringe projection is a pixel-independent (each pixel is calculated independently) method, 
an image mask can be used to obtain measured data only on selected small patch of the 
part. By use of masks, we can easily divide the part into several measurement patches and 
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measure them separately. The fringe mask can be generated from a previous point cloud, 
manually selected mask border, or a 3D model at a known location.

Another way to calibrate the projector is to use a stripe data set instead of grid data set. 
When straight-line fringe patterns are used in the digital phase-shifting systems, in order 
to use the nonlinear model for phase-to-coordinate conversion, we need the light sheet ori-
entation information that corresponds to an absolute phase value. It is known that a plane 

FIGURE 7.17
Projected grids on the calibration target with dot patterns.

FIGURE 7.18
Point cloud of the projected grid points on the target at 5 Z positions.
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in 3D space can be interpolated from two known 3D planes called base planes. Assuming 
the two base planes have equations A1x + B1y + C1z + D1 = 0 and A2x + B2y + C2z + D2 = 0, for 
a phase value Φ′, the pixel location δ in the projector chip is (p is the pitch of the digital 
fringe pattern)

 
δ

π
= ′pΦ
2

 (7.79)

whose corresponding light sheet plane in the global coordinate system can be deter-
mined as

 A x B y C z D A x B y C z D1 1 1 1 2 2 2 2+ + + + × + + +( ) =δ 0  (7.80)

To find the base plane equations, multiple line strips with known stripe location (deter-
mined by pixel number on the projector chip) can be projected onto the calibration target 
whose image is captured by the camera during calibration at each position. Similar to grid 
image processing, at each known Z position, the images of these stripes can be processed 
and the 3D coordinates of these strip lines on the target can be obtained after the camera 
calibration is performed. Figure 7.19 shows the captured stripe image, and Figure 7.20 the 
processed 3D coordinates in the 3D space. With this data set, the two base plane equation 
parameters (A1, B1, C1, D1) and (A2, B2, C2, D2) can be obtained through fitting.

When Zhang calibration is used in the camera calibration, no Z position is available for 
grid or strip image processing to obtain 3D point clouds. In this case, a link between the 
camera and the projector has to be established for the projector calibration.63,73 The basic 
idea is to map the CCD image to the projector chip to form a so-called projector image. 
First, the vertical and horizontal fringes with additional centerline stripes are projected, 
and phase shifting is performed to obtain the absolute phase map in both the horizontal 
and the vertical directions as in regular phase shifting. The horizontal absolute phase map 
Φ′x and vertical absolute phase map Φ′y are saved to map the camera pixel to the projector 
pixel. At each orientation during calibration, the same checkerboard is used for the camera 
calibration and projector calibration, and grayscale images capturing and phase shifting 

FIGURE 7.19
Projected stripes on the calibration target with dot patterns.
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on the checkerboard are performed. First, the grayscale images of the checkerboard are 
processed for camera calibration using Zhang’s calibration model. For each feature (corner 
of the squares) on the CCD image, its pixel index (i, j) can be mapped to the projector index 
(u, v) as (px and py are the pitches of the fringes)

 
u p i jx x= ′Φ ( , )

2π
 (7.81)

 
v p i jy y= ′Φ ( , )

2π
 (7.82)

The checkerboard’s feature locations and their corresponding projector index (u, v) are 
then used for projector calibration just as in camera calibration. Because the same check-
erboard is used for both phase shifting and calibration, a special colorful pattern is often 
used to ensure high-contrast images are available for both purposes.63

7.5 Error Analysis and Compensation for Phase-Shifting Systems

As in any other optical instrument, the phase-shifting measurement system should 
always use the most reliable and best-quality components if they are available and 
 affordable. The reason is obvious: a carefully designed lens with very little distortion 

FIGURE 7.20
Point cloud of the projected five stripes on the target at 21 Z positions.
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is more likely to provide better results than using a low-quality lens with software-
based lens distortion correction; setting the projector gamma to linear is better than 
compensating for a nonlinear gamma curve in a projector. Moreover, coupling among 
different error sources may make the error compensation less efficient and more difficult. 
In addition, care has to be taken in system adjustment such as alignment and focusing/
defocusing. With that said, error correction and compensation are still very useful as a 
last means of obtaining high-quality measurement results although it makes sense only 
after a “best” system is built.

7.5.1 Error Sources and Adjustment in the Phase-Shifting System

There are many error sources in an optical phase-shifting measurement system.74,75 This 
section discusses the major and most common error sources and their behaviors.

7.5.1.1 Phase-Shifting Error

In digital phase-shifting systems, the phase shift is generated in a software program, and 
theoretically, there is no phase-shift error. In physical phase shifting, linear phase-shift 
error from stage miscalibration and nonlinear phase-shift error from poor stage response 
or control are one of the major concerns.22

A phase-shift error can sometimes be observed as ripples in averaged grayscale images. 
For example, in a three-step phase-shifting algorithm, the averaged image of the three 
fringe images should not have any ripple. Adding Equations 7.12 through 7.14, the aver-
aged image Ī can be calculated as

 
I I I I I i j= + + =1 2 3

3 ( , )  (7.83)

which is a uniform background image whose brightness is about half of the maximum 
brightness.

If one image has a phase-shift error, the averaged image will have significant ripples. 
Figure 7.21 shows the averaged image of three simulated fringe images with a phase shift 
of 0°, 120°, and 245°.

One option to reduce the phase-shift error in physical phase-shifting systems is to use 
a very linear phase shifter and carefully calibrate the stage response to determine voltage 
or pulse signal. Another option is to select a phase-shift algorithm that is insensitive 

0° phase shift 120° phase 245° phase Averaged

FIGURE 7.21
Ripples on the averaged image when the third fringe has a 5° phase-shift error.
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to the phase-shift error such as the Carré phase-shifting and five-step phase-shifting 
algorithms.

7.5.1.2 Nonlinearity Error in the Detector/Projector

Nonlinearity errors may exist in both the camera and the projector. For industrial digital 
cameras, even though most have very good linearity unless the camera gain is set too low 
or too high, second-order nonlinearity may still exist. For presentation and home theater 
digital projectors, the default gamma setting is usually nonlinear because it is set for visual 
perception of nonlinear human eyes. Some projectors allow the users to reset gamma to 
be linear, but second-order nonlinearity may still exist. As one of the most severe error 
sources in digital phase-shifting systems, the nonlinearity will have to be compensated, 
which is discussed in more detail in the following sections.

A typical nonlinearity gamma curve is shown in Figure 7.22. This curve was obtained 
by inputting uniform grayscale images at 1 grayscale step up to 8 bits data limit (255 gray-
scale maximum) to a Canon SX50 LCOS projector. For each of the nine available gamma 
settings (from −4 to 4), a 12 bits digital QImaging camera was used to capture images of 
the projected uniform pattern on a white diffusive target for each projected grayscale 
image. The curves show nonlinearity from both the camera and the projector, mainly 
from the projector.

Some phase-shifting algorithms can deal with the nonlinearity error. For example, it has 
been proved that the double three-step phase-shifting algorithm is very efficient in elimi-
nating the second-order nonlinearity error in the imaging/projecting system,39 even if the 
second-order nonlinearity comes from the camera or the projector.
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FIGURE 7.22
Nonlinearity curves of a Canon SX50 LCOS projector.
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7.5.1.3 Modeling and Calibration Error

Selecting the correct modeling and calibration method is critical for accurate measure-
ment. For a lens with large distortion (which may be a combination of magnification errors, 
field curvature, as well as geometric optical distortion), there is no way to obtain accurate 
results without correcting the lens errors using the calibration. Precision of the target, 
quality of the calibration setup, and calibration model including both selected intrinsic 
and extrinsic parameters all contribute to the calibration results.

The model used to convert an absolute phase map to a 3D point cloud is vital as well. For 
surfaces with curvatures, a simplified linear or partially linear model will result in very 
significant errors. In some cases that require multiview merging or extremely high accu-
racy, the light sheet from a grating or a digital projector cannot be taken as granted to be a 
flat plane. Instead, the light sheet has to be treated as a curved surface segment and needs 
to be fitted into a locally cylindrical surface.

7.5.1.4 Imbalance Error for Color Fringe Projections

Color fringe patterns have been used for phase shifting because they provide unique 
features—they enable three 120° phase shifts in one color fringe, allowing for fast mea-
surement in a vibrating environment. However, for color fringe projection,8,13,30,31,71 color 
balance is a big challenge. Because the human eyes have different sensitivity to different 
colors, most digital projectors have different gamma settings for RGB colors. The color 
camera may also have a nonuniform spectral response. In phase-shifting measurement, 
any captured brightness variation due to these imbalances among the three channels 
(corresponding to three fringe images) may contribute to error and noises. Also, colorful 
object surface may be a problem and needs special considerations.76

7.5.1.5 Quantization Error

Advancement in electronics has significantly reduced quantization error. Nowadays, 
12 bits digital cameras are very common, which causes the digitization error to be in 
nanometer scale and thus negligible.74 The digitization error in digital projectors can 
be reduced by use of a high-resolution projector with larger pitch and defocusing the 
projected fringes to act as a low-pass filter. Some projectors such as DLP can even accept 
10 bits image input, which will reduce the digitization error significantly compared with 
the 8 bits data format.

7.5.1.6 Error and Noise from Environment

It has been demonstrated using simulation that the phase error due to vibration and air 
turbulence has a frequency of two times the fringe spatial frequency.74 An obvious option 
is to add vibration isolation or to shield the instrument. Other means of removing vibra-
tion noise include selecting an appropriate phase-shifting algorithm that is less sensitive 
to the vibration, capturing data faster with less images and shorter shutter time, and using 
simultaneous phase shifting or color fringes.

The background and electronic noise of the camera can be reduced by averaging several 
images for each fringe pattern. For digital projectors, a reasonably long camera shutter 
can let the fringe be more stable while too short of a shutter time may cause some prob-
lems because the camera may capture the image at the moment of either the refreshing 
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transition from one image frame to another or the dynamic binary on/off integration of 
the projector chip pixels during image formation.

For highly accurate, repeatable, and reliable measurement, thermal drift may be another 
serious problem. For large FOV measurement, a 0.1 pixel drift may cause 0.5 mm coordi-
nate displacement in the 3D space. Figure 7.23 shows drifts in a Canon SX50 LCOS projec-
tor. These projected line images were taken every 10 min, and the intensity profiles at the 
same cross section were drawn. As can be seen in the figure, severe drift exists.

7.5.2 Nonlinearity Compensation with the Projector Gamma γ
The linearity of the phase-shifting system is so important in obtaining high-accuracy, 
low-noise point cloud that many papers have been published in this area. This section 
discusses the two most widely used gamma correction techniques in digital phase-
shifting systems.

7.5.2.1 Gamma Correction with the Response Curve

As shown in Figure 7.22, nonlinearity in a digital projector can be very severe, and gamma 
correction is usually desirable. A first step is to pick up a gamma as close to linear as pos-
sible and then measure the system response to get a response curve like that in Figure 7.22. 
The response curve can be obtained by gradually changing the input gray level Ii and 
capturing the nonsaturated images with the fixed gamma setting and camera settings. 
A patch consisting of multiple pixels is used to reduce the noise by averaging their 
grayscales as the response Io.
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Drift in a Canon SX50 LCOS digital projector.
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One gamma correction method using the gamma curve is through a compensation 
function. A polynomial function up to ninth order is usually used to fit the gamma curve 
such as

 I a a I a I a I a I a I a I a I a I a Ii o o o o o o o o o= + + + + + + + + +0 1 2
2

3
3

4
4

5
5
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9  (7.84)

Every intensity value calculated in Equation 7.8 or 7.9 needs to be substituted into Equation 
7.84 as Io to calculate the required input Ii so that the output fringe profile via the projector 
is sinusoidal.

For the gamma γ = 4 curve in Figure 7.22, a noncompensated gamma response will proj-
ect a nonsinusoidal fringe pattern, although the input to the projector is sinusoidal, as 
shown in Figure 7.24. After processing the gamma curve compensation, the 10 coefficients 
in Equation 7.84 are listed in Table 7.1.

The compensation process is demonstrated in Figure 7.25 using the compensation coef-
ficients given in Table 7.1.

An alternative way to the compensation function is to use a lookup table (LUT) and 
 interpolation to modify the calculated intensity by ΔI from Equation 7.8 or 7.9 using

 ′ = +I I I I∆ ( )  (7.85)
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Projected fringe through a nonlinear projector (arrows indicate the data flow path).
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where ΔI is a function of the calculated intensity I and is obtained by interpolating in 
the LUT.77 The LUT is obtained by comparing the difference between the measured 
gamma curve and the ideal linear curve (upper curve), as shown in Figure 7.26. For each 
input grayscale value I, the system generates grayscale output g; for the system to be 
linear, the required output grayscale should be g′, which needs input I′. In order to 
compensate for the nonlinearity, the calculated intensity I from Equation 7.8 has to be 
modified by ΔI:

 ∆I I I= ′ −  (7.86)

The LUT is obtained by recording all calculated ΔI for the input grayscale from 0 to 255 for 
8 bits projector. Later when the fringe pattern is generated in the software using Equation 
7.8, for each calculated I, the corresponding ΔI has to be calculated from the LUT through 
internal interpolation and the input image to the projector is then calculated using Equation 
7.85. Because interpolation is involved, this method requires the projector’s gamma curve 
to be monotonic.

7.5.2.2 Gamma Correction with a One-Parameter Gamma Model

The use of a one-parameter gamma function to estimate both the phase and gamma is also 
a hot topic in addressing the nonlinearity problem.78–80 The gamma function that describes 
the relationship between input Ii and output Io with a gamma γ can be modeled as

 I Io i= γ
 (7.87)

Estimating the phase value for a linear system from the calculated phase map under a non-
linear system involves the phase shifting to obtain the phase and then an iterative process 
to estimate the gamma and phase alternatively. Some researchers also use the least-square 
fitting method with a few images to estimate the phase distribution79 while others use 
many images for gamma estimation to apply a statistical method78or to reduce the error in 
gamma estimation.80 Due to an error in the measurement and processing, the estimated 
gamma may vary from pixel to pixel in the image and the average of the estimated gamma 
over the entire image is taken as the “global” gamma. Using the gamma function (model) 

TABLE 7.1

Ten Compensation Coefficients

Coefficient ai Value

a0 8.005962569868930e+00
a1 3.767418142271050e+00
a2 −1.417556486538000e−01
a3 4.004162099686760e−03
a4 −6.551477558101120e−05
a5 6.464338860749370e−07
a6 −3.910659971627370e−09
a7 1.417609255380700e−11
a8 −2.823177656665190e−14
a9 2.372943262233540e−17
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for phase estimation does not need the gamma curve and one-time compensation but it 
usually needs additional fitting or iteration, and thus is time consuming.

7.5.3 Phase Error Compensation

As an intermediate between the captured images and desired coordinates (point cloud), a 
phase map can also be compensated, a method that has some advantages. Compared with 
direct coordinate correction, phase compensation can be faster and easier to implement as 
long as a good correction mechanism can be built that is reliable and not dependent on the 
measurement settings during image capturing.

Over the past several years, such phase compensation techniques have started to 
emerge.77,81–83 It has been demonstrated that the phase error due to the system nonlinearity 
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is independent of the pitch used in the fringe generation. The phase error LUT only needs 
to be built on one 2π phase cycle. The required LUT is generated by performing a phase-
shifting measurement with a large pitch on a white flat surface. The phase with and with-
out nonlinearity issues is compared to construct the error map. The established phase 
error LUT can be applied to the wrapped phase map when a part is measured.

Some researchers84 have also investigated the use of a phase compensation function 
to correct the distorted phase map directly through an inverse function. The inverse 
function is a polynomial function obtained through an iterative fitting process. After 
original phase shifting is performed, the calculated phase map is then modified by 
this correction function and the new phase map will have much less error from system 
nonlinearity.

Compared with the gamma correction discussed in the previous section, the phase error 
compensation technique takes more computing effort. The gamma correction can be done 
once before measurement while the phase correction has to be performed pixel by pixel 
after measurement.

7.5.4 Coordinate Compensation

Although the effects of many error sources can be reduced by various means, the achieved 
accuracy may still be limited because there are some errors that cannot be reduced by 
these measures completely. This limitation makes direct coordinate error compensation 
a very important technique for measurement systems to reach higher accuracy without 
significantly increasing manufacturing cost.

7.5.4.1 Coordinate Error Map

The first step for coordinate error compensation is to obtain an error map in the 3D space. 
This is performed by measuring a feature (point or surface) and comparing the measured 
data with a reference data point. Two methods were investigated to collect data for the 
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error map construction. One method is to use a flat surface as a reference. The measured 
data of the surface are fitted into a plane, and the deviation from the fitted plane at each 
point can be used as an error map at that location. Moving the target to various positions 
in the 3D space and obtaining the error map at each location provide an error map in the 
entire measurement volume.

The other method to obtain the error map is to use CMM to provide the coordinate refer-
ence.85 In this setup, a small target with a dot in the center is mounted on a CMM probe. 
CMM moves the target to predetermined points in the measurement volume. At each 
point, the target is measured and the coordinates of its center dot are extracted. An error 
map in the 3D space can be obtained by comparing the measured coordinates with the 
CMM coordinates.

Once the error map is obtained, the errors in the measurement system can be compen-
sated at measured points through either error functions or interpolation.

7.5.4.2 Coordinate Error Compensation

In some cases, it is possible to find an error compensation function rather than use a LUT, 
especially when the system measurement volume and error map are symmetric, in which 
case the error functions are the easiest to reconstruct. A traditional method to reconstruct 
the error function Δ is to fit the error map into a function of coordinates (x, y, z) and errors 
(ex, ey, ez) such as

 ∆x xf x y z e= ( ), , ,  (7.88)

 
∆y yf x y z e= ( ), , ,  (7.89)

 ∆z zf x y z e= ( ), , ,  (7.90)

The coordinates (x′, y′, z′) after compensation can be calculated as

 
x y z x y zx y z, , ' , ,( ) = + + +( )∆ ∆ ∆  (7.91)

In general cases, the error map will not be symmetric, and it might be impractical to recon-
struct an error function with high accuracy. More often, a LUT can be built to compensate 
the coordinate errors through interpolation. A 3D interpolation technique called Shepard’s 
method86 is used for error compensation in some research. The interpolated value s is 
given by a function

 
s v w v vi i

i

N

( ) ( ) ( )= [ ]
=

∑ ∆
1

 (7.92)

where
v is a vector representing a point
N is the number of points used in the interpolation
Δ(vi) is the error at point vi
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The weighting function wi(v) has the form
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 (7.93)

Obviously, if v = vi, s(v) = Δ(vi). If a point vi is closer to the point v to be interpolated, it is 
given a larger weight. The Euclidean normal is defined as

 

v k
k

K

=
=

∑ξ2

1
 (7.94)

where ξk is the element of vector v. In most cases, K = 3 and s can be the interpolated error 
in any coordinate direction depending on Δ(vi). Since the error map is in the form of a 3D 
grid, the number of points used in the interpolation N can be set to be eight. For every 
measured point, the data set of the error map is searched to find the eight points that are 
the closest to the measured point and calculate their weight functions wi(v) (i = 1–8) accord-
ing to Equation 7.93. The interpolated error for the measured point is then calculated by 
Equation 7.92. This error is then subtracted from the measured coordinates of the point to 
improve measurement accuracy.

7.6 Summary

In this chapter, we tried to detail the science and methods behind the field of phase 
shifting–based methods. These methods have been used in a wide range of commercial 
systems made for such applications as reverse engineering of part geometry, process con-
trol of formed parts like airfoil and sheet metal structures, as well as small area mapping 
of features like edge breaks on machined part out to dental impressions of people’s teeth. 
The use of phase-shifting methods has been made more widely practical by high-speed 
computers and larger memory chips that allow a typical phase-shift measurement to be 
made in a few seconds in most cases and at the frame rates of cameras using some dedi-
cated hardware.

In Chapter 1, we discussed some of the challenges in applying 3D technology for indus-
trial metrology purposes. In subsequent chapters, we will present a wide range of examples 
of applications of this technology.
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